1887
Volume 6 (2025) Number 2
  • EISSN: 2708-0463

Abstract

يُعَدَ داء الفاشيولوسز () من الأمراض المشتركة الطفيلية التي تسببها ديدان المثقوبة الكبدية الشائعة المنتشرة في مختلف أنحاء العالم، والتي تتطفل على الكبد والقنوات الصفراوية لحيوانات المزرعة المختلفة؛ مسبِّبةً خسائر اقتصادية تتمثل بنفوق الحيوانات المصابة بالنوع الحاد من المرض، وبنقص الإنتاج من اللحم والحليب والصوف، فضلًا عن المَبالغ التي تُصرَف على العلاج والسيطرة. استهدفت الدراسة الحالية التشخيص المختبري للإصابة المزمنة بديدان المثقوبة الكبدية الشائعة في الضأن باستخدام تقنيات فحص البراز التقليدية المختلفة، كالفحص المباشر، والترسيب التقليدي، وترسيب الإيثر، وترسيب خلات الإيثيل، والكاتو كاتز (اللطخة السميكة)، ومقارنتها بالتقنيات التجارية الحديثة التي طُورت في السنوات الأخيرة، وهي مقايسة الممتز المناعي المرتبط بالإنزيم المباشر (الكاشف عن المستضد)، وتقنية الفلوك فايندر، فضلًا عن دراسة بعض التغييرات الدمية والكيموحيوية في الضأن المصابة، إذ تم جمع 92 عينة براز ودم من الضأن التي تراوحت أعمارها ما بين 1-7 سنوات، ومن السلالات المحلية، التي أظهرت علامات سريرية، كالهزال، وشحوب الأغشية المخاطية، وسقوط الصوف، أو سهولة انتزاعه، فضلًا عن وجود الفك القنيني من مناطق مدينة الموصل المختلفة (قرية تل الذهب، وقرية زورافا، وقرية عداية، ووانه، وزمار، والرشيدية)، كما تم جمع 8 عينات أخرى من البراز والدم من حيوانات سوية سريريًّا ومختبريًّا (غير مصابة بالطفيليات الداخلية والخارجية)، لغرض استخدامها كمجموعة مقارنة لدراسة التغيرات الدمية والكيموحيوية. أظهرت النتائج أن نسبة عينات البراز الموجبة كانت 20.7%، و16.3%، و15.21%، و8.70%، و6.52%، و4.34%، و2.17% باستخدام تقنيات مقايسة الممتز المناعي المرتبط بالإنزيم المباشر (الكاشف عن المستضد) لديدان المثقوبة الكبدية الشائعة، والفلوك فايندر، والترسيب، وترسيب الإيثر، وترسيب خلات الإيثيل، وفحص البراز المباشر وتقنية الكاتو كاتز على التوالي. ظهرت بيوض الطفيلي بيضوية الشكل وبلون أصفر مع وجود غطاء في أحد جانبيها بمعدل طول (147 ± 1.4) ميكرون، ومعدل عرض (85.4 ± 1.6) ميكرون. شملت التغييرات الدمية فقر الدم من النوع صغير حجم الكرية سوية الخضاب، إذ عانت الحيوانات المصابة بالطفيلي من نقص معنوي في كل من العد الكلي لكريات الدم الحمر، وتركيز خضاب الدم، وحجم كريات الدم الحمر المرصوصة، ومعدل حجم الكرية، مقارنة بالحيوانات السوية سريريًّا ومختبريًّا، رافقه ارتفاع معنوي في العدد الكلي لخلايا الدم البيض، والأعداد المطلقة للخلايا العدلة والحمضة، مع انخفاض معنوي في الأعداد المطلقة للخلايا الليمفية، مقارنةً بالحيوانات السوية سريريًّا ومختبريًّا، كما أظهرت النتائج وجود زيادة معنوية في العدد الكلي للصفائح الدموية، وتوزيعها، ومعدل توزيع الصفائح الدموية والمخزون الصفائحي، ونسبة خلايا صفائح الدم الكبيرة، مقارنة بالحيوانات السوية سريريًّا ومختبريًّا. وسجلت خلال الدراسة ارتفاعًا معنويًّا في مستويات إنزيمات ناقلة الأمين الاسبارتيت، وناقلة الأمين الألانين، والفوسفاتاز القلوي، وناقلة الببتيد كاما كلوتاميل والبليروبين الكلي. نستنتج من الدراسة الحالية إمكانية استخدام مقايسة الممتز المناعي المرتبط بالإنزيم المباشر (الكاشف عن المستضد) بديلًا عن تقنية الترسيب التقليدي في تشخيص داء الفاشيولوسز المزمن في الضأن.

Fasciolosis is a globally prevalent parasitic disease caused by the common liver fluke (). It parasitizes the liver and bile ducts of farm animals, causing economic losses represented by the death of animals in cases of acute infection, decrease in production of meat milk, and wool, in addition to expenses spent on treatment and control measures. This study aimed to conduct laboratory diagnosis of chronic common liver fluke infection in sheep using different traditional fecal tests: direct, traditional sedimentation, ether sedimentation, ethyl acetate sedimentation, and Kato katiz techniques. These were compared with recently developed commercial tests, such as the Direct Enzyme-Linked Immunosorbent Assay (ELISA) for antigenic detector of Fasciola hepatica, and the FlukeFinder® technique; in addition to recording some hematological and biochemical changes in infected sheep. Ninety-two fecal and blood samples were taken from sheep aged 1-7 years and of local breeds that showed clinical signs such as emaciation, pale mucous membranes, wool loss, or wool that easily detached, as well as the presence of bottle jaw from various areas of Mosul city (Tal Al-Dhahab village, Zorava village, Adaya village, Aana, Zummar, and Rashidiya). Eight additional fecal and blood samples were collected from clinically and laboratory-healthy animals (not infected with internal and external parasites) to serve as a comparison group for studies on blood and biochemical alterations .The results showed that the percentage of positive fecal samples was 20.6%, 16.3%, 15.21%, 8.70%, 6.52%, 4.34%, and 2.17% using ELISA techniques (antigen detector) for common liver flukes, FlukeFinder®, sedimentation, ether sedimentation, ethyl acetate sedimentation, direct fecal examination, and Kato katiz techniques respectively. The parasitic eggs appeared oval-shaped and yellow in colour with an opareculum on one side, with an average length of (147 ± 1.4) microns and an average width of (85.4 ± 1.6) microns. Hematologic changes included microcytic anemia and normochromic anemia. The parasite-infected animals had significantly lower total red blood cell count, haemoglobin concentration, packed cell volume, and mean corpuscular volume than clinically and laboratory-normal animals. This was accompanied by a significant increase in the total leukocyte count, the absolute numbers of neutrophils and eosinophils, and a significant decrease in the absolute numbers of lymphocytes as compared to clinically and laboratory-normal animals. Additionally, the results revealed a significant increase in the total platelet count, platelet distribution, platelet distribution rate, platelet reserve, and percentage of large platelets as compared to clinically and laboratory-normal animals. The study found a significant increase in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, and total bilirubin levels. We conclude from the current study the possibility of using the direct enzyme-linked immunosorbent assay(antigen-detecting) as an alternative to the traditional sedimentation technique for diagnosing chronic fasciolosis in sheep.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2025.9
2025-09-07
2025-12-13

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2025/2/AJSR.2025.issue2.9.html?itemId=/content/journals/10.5339/ajsr.2025.9&mimeType=html&fmt=ahah

References

  1. Gombez AXF, Rodrigues RM, Lucheis SB, Manzini S, Bertozzo TV, Aires IN, Lima SG, Flamínio PF. Fasciola hepatica: a brief literature review. Veterinária e Zootecnia. 2024; 31:(1), 1-12. https://doi.org/10.35172/rvz.2024.v31.1615
    [Google Scholar]
  2. Howell AK, Williams DJL. The Epidemiology and Control of Liver Flukes in Cattle and Sheep. Veterinary Clinics of North America: Food Animal Practice. 2020; 36:(1),109-123. https://doi.org/10.1016/j.cvfa.2019.12.002
    [Google Scholar]
  3. Stuen S, Ersdal C. Fasciolosis —An Increasing Challenge in the Sheep Industry. Animals. 2022; 12:(12):1491. https://doi.org/10.3390/ani12121491
    [Google Scholar]
  4. Itagaki T, Hayashi K, Ohar, Y. The causative agents of fascioliasis in animals and humans: Parthenogenetic Fasciola in Asia and other regions. Infection, Genetics and Evolution. 2022;99: 105248https://doi.org/10.1016/j.meegid.2022.105248
    [Google Scholar]
  5. Rosas-Hostos Infantes LR, Paredes Yataco GA, Ortiz-Martínez Y, et al. The global prevalence of human fascioliasis: a systematic review and meta-analysis. Therapeutic Advances in Infectious Disease. 2023; 10. https://doi.org/10.1177/20499361231185413
    [Google Scholar]
  6. Minani S, Nsengiyumva E, Bigirimana A, Cubahiro A, Ntakirutimana D, Bizoza V. Prevalence of fascioliasis in slaughtered ruminants at Muyinga Slaughterhouse, Burundi. Veterinar Sciences Research and Reviews. 2023; 9:(1):65-73. https://dx.doi.org/10.17582/journal.vsrr/2023/9.1.65.73
    [Google Scholar]
  7. Phelan PJ, Morgan ER, Rose H, James, Padraig O'Kiely. Predictions of future grazing season length for European dairy, beef and sheep farms based on regression with bioclimatic variables. The Journal of Agricultural Science. 2016; 154:(5):765–781.https://doi.org/10.1017/s0021859615000830
    [Google Scholar]
  8. Herrera-Torres G, Ruiz-Campillo M T, Bautista M J, Martínez-Moreno F J, Zafra R, Buffoni L, Pérez J. Liver Histopathological and Immunohistochemical Evaluation from Fasciola hepatica Experimentally Infected and Reinfected Sheep. Animals. 2024; 14:(12): 1833. https://doi.org/10.3390/ani14121833
    [Google Scholar]
  9. Malatji MP, Mukaratirwa S. Molecular detection of natural infection of Lymnaea (Pseudosuccinea) columella (Gastropoda: Lymnaeidae) with Fasciola gigantica (Digenea: Fasciolidae) from two provinces of South Africa. Journal of Helminthology. 2020;94:e38.https://doi.org/10.1017/S0022149X19000129
    [Google Scholar]
  10. Reigate C, Williams H W, Denwood M, Morphew R, Thomas E, Brophy P. Evaluation of two Fasciola hepatica faecal egg counting protocols in sheep and cattle. Veterinary Parasitology. 2021; 294: 109435. https://doi.org/10.1016/j.vetpar.2021.109435
    [Google Scholar]
  11. Rufino-Moya PJ, Zafra Leva R, Martínez-Moreno Á, Buffoni L, Valderas García E, Pérez Arévalo J, Molina-Hernández V, Ruiz-Campillo MT, Herrera-Torres G, Martínez-Moreno FJ. Advancement in Diagnosis, Treatment, and Vaccines against Fasciola hepatica: A Comprehensive Review. Pathogens. 2024; 13:(8), 669. https://doi.org/10.3390/pathogens13080669
    [Google Scholar]
  12. Mezo M, González-Warleta M, Castro-Hermida JA, Martínez-Sernández V, Ubeira FM. Field evaluation of the enhanced MM3-COPRO ELISA test for the diagnosis of Fasciola hepatica infection in sheep. PLoS One. 2022; 17:(3):e0265569-e0265569https://doi:10.1371/journal.pone.0265569
    [Google Scholar]
  13. Rekani AM, Mero WM. Molecular characterization of Fasciola spp. from ruminants in Duhok province using the ITS1 ribosomal DNA marker. Iraqi Journal of Veterinary Sciences. 2023; 37:(2): 315-323. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230424241">https://www.cabidigitallibrary.org/doi/pdf/10.5555/20230424241
    [Google Scholar]
  14. Taylor MA, Coop RL, Wall RL. Veterinary Parasitology 4th ed. United Kingdom: Wiley-Blackwell: Chichester;2016.p.36. https://tensai.org/ebooks/Veterinary%20parasitology_Tensai.pdf
    [Google Scholar]
  15. Hendrix CM, Robinson CVT. Diagnostic Parasitology for Veterinary Technicians. 6th ed. USA:
    [Google Scholar]
  16. Gedefaw T, Mebratu AS, Dagnachew S, Fenta MD. Comparative analysis of anthelmintic treatments: impact on liver biomarkers and clinical recovery in sheep with fasciolosis. Frontiers in veterinary sciences;2025;12: 1485568. https://doi.org/10.3389/fvets.2025.1485568
    [Google Scholar]
  17. Kamaludeen J, Graham-Brown J, Stephens N, Miller J, Howell A, Beesley NJ, Hodgkinson J, Learmount J, Williams D. Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales. Veterinary Record. 2019; 184:(16):502. https://doi.org/10.1136/vr.105209
    [Google Scholar]
  18. Calvopina M, Romero-Alvarez D, Diaz F, Cevallos W, Sugiyama H. A comparison of Kato-Katz technique to three other methods for diagnosis of Amphimerus spp. liver fluke infection and the prevalence of infection in Chachi Amerindians of Ecuador. PloS one. 2018;13: e0203811. https://doi.org/10.1371/journal.pone.0203811
    [Google Scholar]
  19. Mezo M, González-Warleta M, Carro C, Ubeira FM. An ultrasensitive capture ELISA for detection of Fasciola hepatica coproantigens in sheep and cattle using a new monoclonal antibody (MM3). Journal of Parasitology.2004; 90:(4):845–52. doi: 10.1645/GE-192R. PMID: 15357080.
    [Google Scholar]
  20. Hammami I, Amdouni Y, Romdhane R, Sassi L, Farhat N, Rekik M, Gharbi M. 2024:Prevalenc of Fasciola hepatica infection in slaughtered sheep from Northwest Tunisia and its risk factors: Association with gastrointestinal helminths infection and anaemia. Veterinary Medicine and Science. 2024; 10:(5):e1575. https://doi.org/10.1002/vms3.1575
    [Google Scholar]
  21. Delgado N U, Pereira A E, Martínez R A, Muñoz A A F, Pinilla J C. Seroprevalence and coprological prevalence of liver fluke Fasciola hepatica in cattle and sheep from Santander department, Colombia. Brazilia Journal of veterinary parasitology. 2023; 32:(4): e009923. https://doi.org/10.1590/S1984-29612023071
    [Google Scholar]
  22. Bostanci A, Oğuz B. Copro-ELISA Prevalence of Fasciola hepatica in Cattle in Van, Turkey. Act Scientiae Veterinariae. 2017; 45:(1): 7. https://doi.org/10.22456/1679-9216.80253
    [Google Scholar]
  23. Yesuf M, Erara M, Kenubih A, Belay A, Ahmedin N. Hemato-biochemical profiles of sheep infected with fasciolosis in comparison with healthy controls. Online Journal of Animal and Feed Reserach. 2020; 10:(2): 71-75. https://dx.doi.org/10.36380/scil.2020.ojafr10
    [Google Scholar]
  24. Rehman A, Ullah S, Malik MI, Umar M, Shah SMK, Shakirullah, Khan MS, Muhmmad K, Noman M, Naeem M. Prevalence of Fasciola hepatica infestation and pathological examination in sheep (Ovis aries) in Dera Ismail Khan. Pure and Applied Biology. 2019; 9:(1):105–111.https://doi.org/10.19045/bspab.2020.90013
    [Google Scholar]
  25. Flay KJ, Hill FI, Muguiro DH. A Review: Haemonchus contortus Infection in Pasture-Based Sheep Production Systems, with a Focus on the Pathogenesis of Anaemia and Changes in Haematological Parameters. Animals. 2022; 12:(10):1238. https://doi.org/10.3390/ani12101238
    [Google Scholar]
  26. Kojouri GA, Jalali Y, Shojai J, Shahnamnia M, Kojouri A. Comparing serum and hepatic concentrations of iron, copper, and cobalt in healthy sheep and sheep with chronic fasciolosis. Comparative Clinical Pathology.2012; 22:(1), 141–145. https://doi.org/10.1007/S00580-012-1646-8
    [Google Scholar]
  27. Egbu FMI, Ubachukwu PO, Okoye IC. Haematological changes due to bovine fascioliasis. African Journal of Biotechnology. 2013; 12:(15): 1828–1835. https://doi.org/10.5897/ajb12.2716
    [Google Scholar]
  28. Oleiwi Kh I, Hussein ZS, Salman KO. Detection of Fasciola hepatica in Abu-Ghraib district (Iraq). Journal of Entomology and Zoology Studies. 2017; 5:(6): 1068-1072. https://www.entomoljournal.com/archives/?year=2017&vol=5&issue=6&ArticleId=2704
    [Google Scholar]
  29. Xhemollari E, Bizhga B, Dhaskali L, Dimço E. Comparison Of Some Haematological and Biochemical Parameters in Different Pathologies in Sheep. Journal of Multidisciplinary Engineering Science and Technology. 2017; 4:(6):7562-7567.https://www.jmest.org/wp-content/uploads/JMESTN42352278.pdf
    [Google Scholar]
  30. Harvey JW. Introduction to Veterinary Hematology. In Saunders WB, Veterinary Hematology. USA:.
  31. Joachim A S A, Daugschies A. Fasciola hepatica alters coagulation parameters in sheep plasma in vivo and in vitro. Parasitology Research. 2022; 89:(1):53–58. https://doi.org/10.1007/s00436-002-0723-3
    [Google Scholar]
  32. Arfuso F, Fazio F, Rizzo M, Marafioti S, Zanghì E, Piccione G. Factors affecting the hematological parameters in different goat breeds from Italy. Annals of Animal Science. 2016 Jul: 1; 16:(3):743. https://doi.org/10.1515/aoas-2015-0094
    [Google Scholar]
  33. Kowalczyk SJ, Czopowicz M, Weber CN, Müller E, Kaba J. Accuracy of a diagnostic model based on serum biochemical parameters in detecting cows at an increased risk of chronic fascioliasis. Veterinary Parasitology. 2018 Apr 30;254:15-20. https://doi.org/10.1016/j.vetpar.2018.02.038
    [Google Scholar]
  34. Hodžić A, Zuko A, Avdić R, Alić A, Omeragić J, Jažić A. Influence of Fasciola hepatica on Serum Biochemical Parameters and Vascular and Biliary System of Sheep Liver. Iran Journal of Parasitology. 2013; 8:(1):92-98. PMCID: PMC3655246
    [Google Scholar]
/content/journals/10.5339/ajsr.2025.9
Loading
/content/journals/10.5339/ajsr.2025.9
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error