1887
لظهور النص العربي بالشكل الصحيح، انقر على
ARأعلى الشاشة وتحويلها الى  EN 
Volume 2020, Issue 2
  • EISSN: 2708-0463

Abstract

إنّ الخصائص البكتيرية و الفيزيوكيميائية لمياه البحر لها تأثير مباشر في صحة الإنسان، لذا اهتمّت هذه الّدراسة بالكشف عن مؤشّرات التّلوّث بشاطئ رجيش، بمدينة المهديّة شرق السّاحل التّونسي، والتحرّي بخصوص حساسية البكتيريا المعزولة للمضادات الحيويّة. شمل هذا البحث عينات ّمن مياه البحر والرواسب خلال أربعة أشهر متتالية، وتبيّن أنّ إجمالي المواد الصلبة العالقة والمركبات العضوية المولدة، أعلى من المعايير المقبولة في تونس، كما جرى الكشف عن المكورات المعوية البرازية في جميع المواقع، مما يدل على التلوّث البرازي البشري والحيواني للماء. كانت جميع السلالات المعزولة شديدة المقاومة للريفامبيسين والجنتاميسين والكلورامفينيكول والأمبيسيلين والأزيثروميسين. أمام هذه الوضعيّة، يوصى بالانتباه إلى عمليّة معالجة مياه المصارف، واعتماد تقنية المعالجة الثّلاثيّة قبل تصريفها في البحر، للمحافظة على الصحّة العامّة والحدّ من التلوث المائي وانتشار الأمراض.

Bacterial and physicochemical properties of seawater have a crucial impact on human health. Data about these characteristics in Rejiche Cost, a touristic and a fishing area in Tunisia are limited. Thus, in the present study, seawater and sediment samples were collected during four successive months.

Various physicochemical and microbial properties were screened to ascertain the safety of water for swimming. Antimicrobial susceptibilities were determined using disc diffusion method. Total suspended solid, turbidity, absorbable organic halogen, chemical oxygen demand and biochemical oxygen demand were higher than accepted norms in Tunisia. Our results showed that the situation in Rejiche cost is alarming. Treatment of wastewater discharges requires intensive monitoring to improve seawater quality and to respect the required healthy standards.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2020.9
2020-11-15
2020-11-29
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2020/2/ajsr.2020.9.html?itemId=/content/journals/10.5339/ajsr.2020.9&mimeType=html&fmt=ahah

References

  1. Griffin DW, Donaldson KA, Paul JH, Rose JB. Pathogenic human viruses in coastal waters. Clinical Microbiology Reviews. 2003;16(1):129–143. https://doi.org/10.1128/cmr.16.1.129-143.20031
  2. Henrickson SE, Wong T, Allen P, Ford T, Epstein PR. Marine swimming-related illness: Implications for monitoring and environmental policy. Environmental Health Perspectives. 2001;109(7):645–650. https://doi.org/10.1289/ehp.01109645
  3. Ralston EP, Kite-Powell H, Beet A. An estimate of the cost of acute health effects from food- and water-borne marine pathogens and toxins in the USA. Journal of Water & Health. 2011;9(4):680–694. https://doi.org/10.2166/wh.2011.157
  4. Chandrasekaran S, Venkatesh B, Lalithakumari D. Transfer and expression of a multiple antibiotic resistance plasmid in marine bacteria. Current Microbiology. 1998;37(5):347–351.
  5. de Vicente A, Avilés M, Codina JC, Borrego JJ, Romero P. Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. Journal of Applied Bacteriology. 1990;68(6):625–632.
  6. Kimiran-Erdem A, Arslan EO, Sanli Yurudu NO, Zeybek Z, Dogruoz N, Cotuk A. Isolation and identification of enterococci from seawater samples: Assessment of their resistance to antibiotics and heavy metals. Environmental Monitoring and Assessment. 2007;125(1–3):219–228.
  7. Lleò MM, Bonato B, Benedetti D, Canepari P. Survival of enterococcal species in aquatic environments. FEMS Microbiology Ecology. 2005;54(2):189–196.
  8. Figueras MJ, Borrego JJ. New perspectives in monitoring drinking water microbial quality. International Journal of Environmental Research and Public Health. 2010;7(12):4179–4202.
  9. Hartke A, Lemarinier S, Pichereau V, Auffray Y. Survival of Enterococcus faecalis in seawater microcosms is limited in the presence of bacterivorous zooflagellates. Current Microbiology. 2002;44(5):329–335.
  10. Borrego JJ, Figueras MJ. Microbiological quality of natural waters. Microbiologia. 1997;13(4):413–426.
  11. Kaçmaz B, Aksoy A. Antimicrobial resistance of enterococci in Turkey. International Journal of Antimicrobial Agents. 2005;25(6):535–538.
  12. Klare I, Konstabel C, Badstübner D, Werner G, Witte W. Occurrence and spread of antibiotic resistances in Enterococcus faecium. International Journal of Food Microbiology. 2003;88(2–3):269–290.
  13. Bahri A. Water reuse in Tunisia: stakes and prospects. Atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l'Irrigation, 2001, Montpellier, France.11p.cirad-00180335
  14. Jacobs NJ, Zeigler WL, Reed FC, Stukel TA, Rice EW. Comparison of membrane filter, multiple-fermentation-tube, and presence-absence techniques for detecting total coliforms in small community water systems. Applied and Environmental Microbiology. 1986;51(5):1007–1012.
  15. Société Française de Microbiologie. Enterococcus spp. In: CASFM/EUCAST: Société Française de Microbiologie Ed; 2019: p.68-73.
  16. Alipour M, Hajiesmaili R, Talebjannat M, Yahyapour Y. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran. The Scientific World Journal. 2014;2014:1–5.
  17. Poole GC, Berman CH. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management. 2001;27(6):787–802.
  18. Grimvall A, Asplund G, Borén H, Jonsson S. Origin of adsorbable organic halogens (AOX) in aquatic environments. In: Angeletti G, Bjørseth A, editors. Organic micropollutants in the aquatic environment. Dordrecht: Springer; 1991. pp. 458–464.
  19. Enell M, Wennberg L. Distribution of halogenated organic compounds (AOX) – Swedish transport to surrounding sea areas and mass balance studies in five drainage systems. Water Science & Technology. 1991;24(3–4):385–395.
  20. Sun YX, Zhang F, Wang KL, Gu P. Adsorbable organic halogen compounds and bio-toxicity in hospital wastewater treatment. Huan Jing Ke Xue. 2007;28(10):2219–2222.
  21. Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of enterococci. Microbiology Spectrum. 2019;7(4). https://doi.org/10.1128/microbiolspec.GPP3-0053-2018.
  22. Seyfried PL, Tobin RS, Brown NE, Ness PF. A prospective study of swimming-related illness. II. Morbidity and the microbiological quality of water. American Journal of Public Health. 1985;75(9):1071–1075. https://doi.org/10.2105/ajph.75.9.1071
  23. Palamuleni L, Akoth M. Physico-chemical and microbial analysis of selected borehole water in Mahikeng, South Africa. International Journal of Environmental Research and Public Health. 2015;12(8):8619–8630. https://doi.org/10.3390/ijerph120808619
  24. Echapare EO, Pacala FAA, Mendańo RV, Araza JB. Physico-chemical and microbial analysis of water in Samar mussel farms. Egyptian Journal of Aquatic Research. 2019;45(3):225–230.
  25. Karbasdehi VN, Dobaradaran S, Nabipour I, Ostovar A, Arfaeinia H, Vazirizadeh A, et al. Indicator bacteria community in seawater and coastal sediment: The Persian Gulf as a case. Journal of Environmental Health Science and Engineering. 2017;15:6.
  26. Moore DF, Guzman JA, McGee C. Species distribution and antimicrobial resistance of enterococci isolated from surface and ocean water. Journal of Applied Microbiology. 2008;105(4):1017–1025
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2020.9
Loading
/content/journals/10.5339/ajsr.2020.9
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error