1887
Volume 2021, Issue 2
  • EISSN: 2708-0463

Abstract

تمتلك النباتات الطبية العديد من المكونات ذات الفاعلية الحيوية المتأتية من منتجات الأيض الثانوية، وتستخدم لعلاج العديد من الأمراض. تناولت الدراسة اثنين من النباتات التي تنمو في اليمن والمستخدمة في الطب الشعبي، وهما اللافندر الزغبي () والدورستينيا فويتيدا (). تم التحليل النوعي للمستخلص الميثانولي للنباتين، لمعرفة نوعية مكونات الأيض الثانوية فيها بواسطة الكرموتوغرافيا السائلة عالية الأداء المرتبطة بمطيافية الكتلة (HPLC-MS). كشف التحليل عن وجود العديد من المكونات الفعالة في النباتين مثل الفلافونيدات والتربينات والقلويدات والكومارينات. احتوى نبات الدورستينيا فويتيدا على العديد من الأنواع المختلفة من الفلافونيدات والكومارينات، إضافة إلى نوع واحد من القلويدات، بينما كشف تحليل نبات اللافندر الزغبي عن وجود العديد من التربينات والقلويدات ونوع واحد من الستيرويدات.

Medicinal plants have a broad range of bioactive substances due to the secondary metabolite compositions and used in treatment of several diseases. This study aimed at investigating the methanolic extraction of the bioactive compounds in two Yemeni medicinal plants ( and ) using high-performance liquid chromatography-mass spectrometry. The proposed method provided a tentative identification of several constituents such as alkaloids, flavonoid, steroids, terpenoids and coumarin in the studied plants.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2021.10
2021-10-31
2021-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2021/2/ajsr.2021.10.html?itemId=/content/journals/10.5339/ajsr.2021.10&mimeType=html&fmt=ahah

References

  1. >Monisha S, Balliah R. Phytochemical determination of a polyherbal extract using FTIR and GC–MS analysis. European Journal of Pharmaceutical and Medical Research. 2015; 2:(7):173–178.
    [Google Scholar]
  2. Ali AM., Saeed AAM, Fdhel TA. Phytochemical analysis and antimicrobial screening of selected Yemeni folk medicinal plants. Journal of Medicinal Plants Studies. 2019; 7:(5):108–114.
    [Google Scholar]
  3. علي ع م، سعيد ع أم، فضل ط أ . التحليل التقريبي لأربعة نباتات طبية تنتمي للعائلتين Lamiaceae و Moraceae من منطقة يافع- اليمن. مجلة جامعة عدن للعلوم الطبيعية والتّطبيقية. 24 .2020 (1) ص 99 – 109. https://doi.org/10.13140/RG.2.2.30360.34566
    [Google Scholar]
  4. علي ع م، سعيد ع أم، فضل ط أ .التحليل الكيمونباتي لأربعة نباتات طبية من منطقة يافع- اليمن تنتمي للعائلتين Lamiaceae و .Moraceae مجلة جامعة عدن للعلوم الطبيعية والتّطبيقية. ;2020 المجلد 24 ، العدد 2 ، ص 331–342.
    [Google Scholar]
  5. Abdu OH, Saeed AAM, Fdhel TA. Polyphenols/Flavonoids analysis and antimicrobial activity in pomegranate peel extracts. Electronic Journal of University of Aden for Basic and Applied Sciences. 2020; 1:(1):14–19. https://doi.org/10.47372/ejua-ba.2020.1.4.
    [Google Scholar]
  6. Saeed AAM, Abdu OH, Fdhel TA. HPLC analysis and DPPH assay of some bioactive compounds in pomegranate peel extracts. Research and Reviews: Journal of Medicinal Chemist. 2020; 2:(1):10–23. https://doi.org/10.5281/zenodo.3924864.
    [Google Scholar]
  7. سعيد ع أ م ، الحوشبي ع س س ،. بازقامة م ص م .التّحليل الكمّي للرّطوبة والرّماد وبعض مضادّات التّأكسد في بعض الخضروات المزروعة في دلتا تبن، محافظة لحج، اليمن. مجلّة أريد للعلوم والتكنولوجيا. ; 2020المجلد 3 ، العدد 5 ، ص59–73. https://doi.org/10.36772/arid.aijst.2020.353 .
    [Google Scholar]
  8. Saxena HO, Soni A, Mohammad N, Choubey SK. Phytochemical screening and elemental analysis in different plant parts of Uraria picta Desv: A Dashmul species. Journal of Chemical and Pharmaceutical Research. 2014; 6:(5):756–760.
    [Google Scholar]
  9. Edeoga HO, Okwu DE, Mbaebie BO. Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology. 2005; 4:(7):685–688.
    [Google Scholar]
  10. Hill HF. Economic botany. A textbook of useful plants and plant products. 2nd ed. New York: McGarw-Hill Book Company Inc; 1952.
    [Google Scholar]
  11. Campos MR. Bioactive compounds health benefits and potential applications. UK: Elsevier Inc.; 2019.
    [Google Scholar]
  12. Harborne JB. The flavonoids, advances in research since 1986. London: Chapman & Hall; 1994.
    [Google Scholar]
  13. Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology. 2001;126:485–492.
    [Google Scholar]
  14. Huang Q, Guo Y, Fu R, Peng T, Zhang Y, Chen F. Antioxidant activity of flavonoids from leaves of Jatropha curcas. Science Asia. 2014;40:193–197.
    [Google Scholar]
  15. Garcia O, Castillo J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. Journal of Agricultural and Food Chemistry. 2008; 56:(6):6185–6205.
    [Google Scholar]
  16. Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, et al. Flavonoids and related compounds as anti-allergic substances. Allergology International: Official Journal of the Japanese Society of Allergology. 2007;56:113–123.
    [Google Scholar]
  17. Ziegler J, Facchini PJ. Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology. 2008;59:735–769.
    [Google Scholar]
  18. Czapski GA, Szypuła W, Kudlik M, Wileńska B, Kania M, Danikiewicz W, et al. Assessment of antioxidative activity of alkaloids from Huperzia selago and Diphasiastrum complanatum using in vitro systems. Folia Neuropathologica. 2014; 52:(4):394–406.
    [Google Scholar]
  19. Karou D, Savadogo A, Canini A, Yameogo S, Montesano C, Simpore J, et al. Antibacterial activity of alkaloids from Sida acuta. African Journal of Biotechnology. 2006; 5:(2):195–200.
    [Google Scholar]
  20. Amarowicza R, Naczka M, Shahidi F. Antioxidant activity of crude tannins of canola and rapeseed hulls. Journal of the American Oil Chemists' Society. 2000; 77:(9):957–961.
    [Google Scholar]
  21. Shohayeb M, Abdel-Hameed E, Bazaid S. Antimicrobial activity of tannins and extracts of different parts of Conocarpus erectus L. International Journal of Pharma and Bio Sciences. 2013; 3:(2):544–553.
    [Google Scholar]
  22. Park M, Cho H, Jung H, Lee H, Hwang KT. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. Journal of Food Biochemistry. 2014;38:259–270.
    [Google Scholar]
  23. Strier KB. Primate behavior ecology. Boston: Allyn and Bacon; 2003.
    [Google Scholar]
  24. Kraus TE, Dahlgren RAC, Zasoski RJ. Tannins in nutrient dynamics of forest ecosystems: A review. Plant and Soil. 2003;256:41–66.
    [Google Scholar]
  25. Prassas I, Diamandis EP. Novel therapeutic applications of cardiac glycosides. Nature Reviews Drug Discovery. 2008;7:926–935.
    [Google Scholar]
  26. Newman RA, Yang P, Pawlus AD, Block KI. Cardiac glycosides as novel cancer therapeutic agents. Molecular Interventions. 2008;8:36–49.
    [Google Scholar]
  27. Afolabi C, Akinmoladun EO, Dan-Ologe IA. Phytochemical constituents and antioxidant properties of extracts from the leaves of Chromolaena odorata. Scientific Research and Essays. 2007; 2:(6):191–194.
    [Google Scholar]
  28. Qadir U, Paul VI, Ganesh P. Preliminary phytochemical screening and in vitro antibacterial activity of Anamirta cocculus (Linn.) seeds. Journal of King Saud University – Science. 2015;27:97–104.
    [Google Scholar]
  29. Dhankhar J, Sharma R. Indumathi KP. Bioactive lipids in milk. International Food Research Journal. 2016; 23:(6):2326–2334.
    [Google Scholar]
  30. Abbas HM, Abd El-Hamid LB, Kassem JM, Salama MI. Bioactive lipids and phospholipids classes of buffalo and goat milk affected by seasonal variations. American Journal of Food Science and Nutrition. 2019; 1:(2):1–13.
    [Google Scholar]
  31. سعيد ع أ م، سالم ط أ ف ، السّعيدي ف س س. التّقدير الكمّي للكوليسترول الكلّي في بعض ألبان الأسواق اليمنيّة. مجلّة جامعة عدن الإلكترونيّة للعلوم الأساسيّة والتّطبيقيّة2020. المجلد1 ، العدد 2 ، ص 111 – 119. https://doi.org/10.47372/ejua-ba.2020.2.22
    [Google Scholar]
  32. Lacaille-Dubois MA, Wagner H. Bioactive saponins from plants: An update. Studies in Natural Products Chemistry. 2000;21B:633–687.
    [Google Scholar]
  33. Wink M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry. 2003;64:3–19.
    [Google Scholar]
  34. Henry M. Saponins and phylogeny: Example of the ‘‘gypsogenin group’’ saponins. Phytochemistry Reviews. 2005;(4):89–94.
    [Google Scholar]
  35. Hu JL, Nie SP, Huang D-F, Li C, Xie M-Y. Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. International Journal of Food Science & Technology. 2012;47:1676–1687.
    [Google Scholar]
  36. Patlolla JMR, Rao CV. Anti-inflammatory and anticancer properties of β-Escin, a triterpene saponin. Current Pharmacology Reports. 2015;1:170–178.
    [Google Scholar]
  37. Alnufaie R, Raj KC, Alsup N, Whitt J, Chambers SA, Gilmore D, et al. Synthesis and antimicrobial studies of coumarin-substituted pyrazole derivatives as potent anti-Staphylococcus aureus agents. Molecules. 2020;25:2758. https://doi.org/10.3390/molecules25122758.
    [Google Scholar]
  38. Godara P, Dulara BK, Barwer N, Chaudhary NS. Comparative GC–MS analysis of bioactive phytochemicals from different plant parts and callus of leptadenia reticulata wight and arn. Pharmacognosy Journal. 2019; 11:(1):129–140.
    [Google Scholar]
  39. Gȍkmen V, editor. Acrylamide in food: Analysis, content and potential health effects. Academic Press. Elsevier.2016.
    [Google Scholar]
  40. Gilani AH, Aziz N, Khan MA, Shaheen F, Jabeen Q, Siddiqui BS, et al. Ethnopharmacological, evaluation of the anticonvulsant, sedative and antispasmodic activities of Lavandula stoechas L. Journal of Ethnopharmacology. 2000;71:161–167.
    [Google Scholar]
  41. El-Said H, Ashgar SS, Bader A, AlQathama A, Halwani M, Ascrizzi R, et al. Essential oil analysis and antimicrobial evaluation of three aromatic plant species growing in Saudi Arabia. Molecules. 2021; 26:(959):1–12. https://doi.org/10.3390/molecules26040959.
    [Google Scholar]
  42. Ali S, Salimi F, Vahid AH. Phytochemical and antimicrobial activities of Lavandula officinalis leaves and stems against some pathogenic microorganisms. Journal of Medicinal Plants Research. 2012; 6:(3):455–460.
    [Google Scholar]
  43. Vilegasa JHY, Lancas FM, Vilegas W, Pozetti GL. Further triterpenes, steroids and furocoumarins from Brazilian medicinal plants of Dorstenia genus (Moraceae). Journal of the Brazilian Chemical Society. 1997; 8:(5):529–535.
    [Google Scholar]
  44. Bertin V, Krohn K, Kouam SF, Hussain H, Dongo E, Meier K, et al. A new isobauerane-type triterpenoid and other, minor constituents from the twigs of Dorstenia dinklagei. Biochemical Systematics and Ecology. 2008;36:655–658.
    [Google Scholar]
  45. Heinke R, Franke K, Michels K, Wessjohann L, Ali NAA, Schmidt J. Analysis of furanocoumarins from Yemenite Dorstenia species by liquid chromatography/electrospray tandem, mass spectrometry. Journal of Mass Spectrometry. 2012;47:7–22.
    [Google Scholar]
  46. Ntie-Kang F, Lifongo LL, Mbaze LM, Ekwelle N, Owono LCO, Megnassan E, et al. Cameroonian medicinal plants: A bioactivity versus ethnobotanical survey and chemotaxonomic classification. BMC Complementary and Alternative Medicine. 2013;13:147.
    [Google Scholar]
  47. الخليدي، ع أ. نباتات برية من اليمن، وزارة السياحة والبيئة، اليمن، كتيب 2002، ص 41.
    [Google Scholar]
  48. Omisore NOA, Adewunmi CO, Iwalewa EO, Ngadjui BT, Adenowo TK, Abegaz BM, et al. Antitrichomonal and antioxidant activities of Dorstenia barteri and Dorstenia convexa. Brazilian Journal of Medical and Biological Research. 2005;38:1087–1094.
    [Google Scholar]
  49. Heinke R, Franke K, Porzel A, Ludger AW, Ali NAA, Schmidt J. Furanocoumarins from Dorstenia foetida. Phytochemistry. 2011;72:929–934.
    [Google Scholar]
  50. WHO. Monographs on selected medicinal plants. 2007; vol. 3:. Report of a WHO global survey, WHO, Geneva.
    [Google Scholar]
  51. Saadatian M, Aghaei M, Farahpour M, Balouch Z. Chemical composition of lavender (Lavandula officinallis L.) extraction extracted by two solvent concentrations. Global Journal of Medicinal Plant Research. 2013; 1:(2):214–217.
    [Google Scholar]
  52. Steinmann D, Ganzera M. Recent advances on HPLC/MS in medicinal plant analysis. Journal of Pharmaceutical and Biomedical Analysis. 2011;(55):744–757.
    [Google Scholar]
  53. Sheemole MS, Antony VT, Kala K, Saji A. Phytochemical analysis of Benincasa hispida (Thunb.) Cogn. fruit using LC–MS technique. International Journal of Pharmaceutical Sciences Review and Research. 2016; 36:(1):244–248.
    [Google Scholar]
  54. Liebler D C, Burr JA, Philips L, Ham AJ. Gas chromatography–mass spectrometry analysis of vitamin E and its oxidation products. Analytical Biochemistry. 1996;236:27–34.
    [Google Scholar]
  55. Banerjee S, Mazumdar S. Electrospray ionization mass spectrometry: A technique to access the information beyond the molecular weight of the analyte. International Journal of Analytical Chemistry. 2012;article ID. 282574:40 pages. https://doi.org/10.1155/2012/282574.
    [Google Scholar]
  56. Saeed AAM, Ali AM, Fdhel TA. HPLC-ESI-MS analysis of some bioactive substances in Two Yemeni medicinal plants. Electronic Journal of University of Aden for Basic and Applied Sciences. 2020; 1:(4):225–235. https://doi.org/10.47372/ejua-ba.2020.4.60.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2021.10
Loading
/content/journals/10.5339/ajsr.2021.10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error