1887
Volume 6 (2025) Number 2
  • EISSN: 2708-0463

Abstract

يُعد مرض سقوط البادرات، المُتسبب عن الفطر ، من الأمراض المُهمة المُهددة لإنتاج الشتلات، حيث استهدفت الدراسة اختبار مُكافحة المرض، بعيداً عن استخدام المبيدات بطريقة آمنة بيئياً وصحياً، ويمكن تطبيقها قبل الزراعة. استُخدم في البحث تقييم تطبيق الكمبوست الحيواني من مُخلفات الأبقار والأغنام والدواجن؛ للمُساعدة في مُكافحة المرض في تجربة نصف حقلية. تم تخمير المُخلفات الحيوانية في ظروف دافئة رطبة لاهوائية لمدة 13 أسبوعاً، ثم طُحنت بعد تجفيفها في الهواء الطلق لمدة أسبوعين. أُضيف الكمبوست إلى التربة المُعقمة قبل وبعد تلويثها بلقاح الفطر المُمْرض؛ لدراسة تأثيره على نسبة الإصابة بالمرض على بادرات الفاصوليا، كمحصول اختبار، وتقدير المادة العضوية في التربة. أَدَّت إضافة الكمبوست إلى التربة إلى خفض نسبة الإصابة بالمرض، الذي انعكس في ارتفاع نسبة البادرات السليمة، وكان كمبوست الأبقار أكثر كفاءة في رفع نسبة البادرات إلى 37.5% بعد تلويث التربة، و50% قبل التلويث، مُقارنة مع 0% للفطر المُمْرض. كما سجل امتداد أطول للجذور 26 سم، ومساحة أكبر للأوراق49.3 سم2 في البادرات تحت المُعاملة بكمبوست الأبقار قبل التلويث بالفطر. بينت نتائج تقدير نسبة المادة العضوية أن إضافة الكمبوست للتربة جعلها غنية جداً بالمادة العضوية وأن كمبوست الأبقار كان الأكفأ في رفع عضوية التربة من 3.3%، بدون إضافة الكمبوست إلى 11.7%، يليه الدواجن (8.7%) ، ثم الأغنام (7%).

, a major disease threatening seedling production, is a major threat to seedling production. This study aimed to check disease control without using pesticides, in an environmentally and health-safe manner that can be applied before planting. The research used compost from cattle, sheep, and poultry manure to help control the disease in a semifield experiment. The animal manure was fermented in warm, humid, anaerobic conditions for 13 weeks, then grounded after dried outdoors for two weeks. Compost was added to sterilized soil before and after inoculation with the pathogenic fungus; with the aim of studying its effect on the disease infection ratio on white bean seedlings as a test crop, and soil organic matter content. Adding compost to the soil reduced the infection, which was reflected in an increased percentage of healthy seedlings. Cattle compost was more efficient in increasing the seedling percentage to 37.5% after soil contamination and 50% before contamination, compared with 0% for the pathogenic fungus. A longer root extension (26cm) and a larger leaf area (49.3cm2) were recorded in seedlings under treatment with the cattle compost before fungal contamination. The results of estimating the percentage of organic matter showed that adding compost to the soil made it very rich in organic matter, and the cattle compost was the most efficient in increasing soil organic matter from 3.3% without compost to 11.7%, followed by poultry (8.7%) then sheep (7%).

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2025.13
2025-10-30
2025-12-05

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2025/2/AJSR.2025.issue2.13.html?itemId=/content/journals/10.5339/ajsr.2025.13&mimeType=html&fmt=ahah

References

  1. Prabhukarthikeyan SR, Parameswaran C, Sawant SB, Naveenkumar R, Mahanty A, Keerthana U, Rath PC. Comparative proteomic analysis of Rhizoctonia solani isolates identifies the differentially expressed proteins with roles in virulence. 2022; Journal of Fungi, 8:(4): 370. doi: 10.3390/jof8040370
    [Google Scholar]
  2. Abdoulaye AH, Foda MF, Kotta-Loizou I. Viruses infecting the pathogenic fungus Rhizoctonia solani. Viruses, 2019; 11:(12): 1113. doi: 10.3390/v11121113
    [Google Scholar]
  3. Hoitink HAJ, Schmitthener AF, Herr LJ. Composted bark for control of root rot in ornamentals, Journal of Arboriculture, 1975. 60: 25–26.
    [Google Scholar]
  4. Boehm MJ, Madden LV, Hoitink HAJ. Effect of organic matter decomposition level on bacterial species diversity and composition in relationship to Pythium damping-off severity. Applied and Environmental Microbiolgy, 1993; 59:71-79. doi: 10.1128/aem.59.12.4171-4179.1993
    [Google Scholar]
  5. Aryantha IP, Cross R, Gaest DI. Suppression of Phytophthora cinnamomi in potting mixes amended with uncomposted and composted animal manures. Phytopathology, 2000; 90: 775-782. doi: 10.1094/PHYTO.2000.90.7.775
    [Google Scholar]
  6. AL-Dulaimy RMH. Effect of addition chemical and organic fertilizers on infection ratio with root rot disease and yield of cucumber (Cucumis sativus L.). Anbar Journal of Agriculture Science. 2007; 2:(5): 233- 243. [الدليمي، رسمي محمد حمد. تأثير إضافة السماد الكيمياوي والعضوي في نسبة الإصابة بمرض تعفن الجذور والحاصل لنبات الخيار. مجلة الأنبار للعلوم الزراعية. 2007؛ 5(2): 233- 243].
    [Google Scholar]
  7. Fayadh MA, Jaafer MO. Effect of some plants extracts and plant residues and animal manure on cowpea infection with charcoal rot disease caused by Macrophomina phaseolina (Tassi) Goid. Basrah Journal of Agriculture Science, 2015; 28:(2):426-440. [فياض، محمد عامر، وجعفر، محمود عودة. تأثير بعض المُستخلصات النباتية والمُخلفات النباتية والحيوانية في إصابة نبات اللوبيا Vigna unguiculata بمرض العفن الفحمي Charcoal rot المُتسبب عن الفطر Macrophomina phaseolina (Tassi) Goid. مجلة البصرة للعلوم الزراعية.2015؛ 28(2):426- 440].
    [Google Scholar]
  8. Da Silva JM, De Medeiros EV, Duda GP, De Barros JA, Dos Santo UJ. Fames and microbial activities involved in the suppression of cassava root rot by organic matter. Review Caatinga, 2017; 30:(3):708–717. doi: 10.1590/1983-21252017v30n319rc
    [Google Scholar]
  9. Raja J, Rajikumar v. Effect of composted poultry manure amendment on root rot disease incidence of sunflower. Plant Archives. 2020; 20:(1):1593-1597. https://cabidigitallibrary.org by 102.164.100.27
    [Google Scholar]
  10. Lasmini SA, Edy N, Yunus M, Burhanuddin Haj Nasir BH, Khasanah N. Effect of the combined application of manure compost and Trichoderma sp. on production parameters and stem rot disease incidence of shallot. Chilean Journal Agriculture Animal Science ex Agro-Ciencia. 2022. 38:(3):335-344. doi: 10.29393/CHJAA38-31OHVL10031
    [Google Scholar]
  11. Todorovi´c, Abrouk D, Fierling N, Kyselkov´a M, Bouffaud M, Buscot F, Giongo A, Smalla K, Picot A, Raičević V, Joviˇci´ c-Petrovi´c J, Mo¨enne-Loccoz Y, Muller D. Manure amendments and fungistasis, and relation with protection of wheat from Fusarium graminearum. Applied Soil Ecology, 2024, 201: 105506. 1-16. doi: 10.1016/j.apsoil.2024.105506
    [Google Scholar]
  12. El-Mougy NS, Abdel-Kareem F, Abdel-Kader MM Fatouh YO. Long term effect of applied compost and bio-agents as integrated treatment for controlling bean root rot disease in solarized soil under field conditions. Plant Pathology and Quarantine, 2013; 3:(1):41–52. doi: 10.5943/ppq/3/1/7
    [Google Scholar]
  13. El-Mougy NS, Abdel-Kader MM, Abdel-Kareem F. Application of commercial composts and/or Trichoderma harzianum for controlling lupine root rot disease under field conditions. International Journal of Engineering and Innovative Technology, 2014; 4:(2):68-73.
    [Google Scholar]
  14. Attiah HW, Ali EAM, Tymor SH. The Effect of interaction by bio-fertilization, organc and metallic in the growth of the product and the output of Luz-be-otono and absorption of some nutrients. Journal of Babylon University. Pure and Applied Science, 2018; 26:(2):107-118. [عطية، حياوي ويوه، علي، ايفان عبدالحسن محمد، و تيموز، سولاف حامد. تأثير التكامل بالتسميد الحيوي والعضوي والمعدني في نمو نبات الباقلاء وناتجه صنف Luz-be-otono وامتصاص بعض العناصر الغذائية. مجلة جامعة بابل، العلوم الصرفة والتطبيقية، 2018؛ 26(2):107- 118].
    [Google Scholar]
  15. Osman HA, Ameen HH, Mohamed M, El-Mohamedy R Elkelan US. Field control of Meloidogyne incognita and root rot disease infecting eggplant using nematicide, fertilizers, and microbial agents. Egyptian Journal of Biological Pest Control, 2018; 28:(40):1-6.doi: 10.1186/s41938-018-0044-1
    [Google Scholar]
  16. Falodun EOgedegbe SA. Response of Tomato (Lycopersicon esculentum Mill.) Varieties to different animal manure. Agriculture Conspectus Scientificus, 2020; 85:(4):311-316.
    [Google Scholar]
  17. Sahoo T, Tripathy A, Pradhan SR, Tarai A. Use of plant products, bio control agents, chemicals and organic amendments for integrated management of Rhizoctonia solani in Cowpea Indian Journal of Pure and Applied Bioscience, 2020; 8:(4):66-75. doi: http://dx.doi.org/10.18782/2582-2845.7968
    [Google Scholar]
  18. Nurbailis N, Martinius M, Liswarni Y. Application of Trichoderma viridae with organic fertilizers as carrier for controlling Sclerotium rolfsii disease in chili. IOP Conf. Series: Earth and Environmental Science, 2021; 741: 1-7. doi: 10.1088/1755-1315/741/1/012030
    [Google Scholar]
  19. AlAaraji HAA. Effect of biocontrol fungus Trichoderma harzianum and some types of organic fertilizers on growth inhibition of Pythium aphanidermatum that caused tomato damping-off disease. Journal of Babylon University Pure and Applied Science, 2013; 2:(21):707-715. [الأعرجي، حمزة أحمد عزيز. اختبار تأثير الفطر الإحيائي Trichoderma harzianum وبعض أنواع الأسمدة العضوية في تثبيط نمو الفطر Pythium aphanidermatum المسبب لمرض سقوط البادرات في نبات الطماطم. مجلة جامعة بابل- العلوم الصرفة والتطبيقية، 2013؛ 2(21):707- 715].
    [Google Scholar]
  20. Ahmed O, Inoue M, Shigeoki M. Effect of saline water irrigation and manure application on the available water content, soil salinity, and growth of wheath. Agricultural Water Management. 2009; 97:(1):165-170. 10.1016/j.agwat.2009.09.001
    [Google Scholar]
  21. Toebe M, Filho AC, Loose LH, Heldwein AB, Zanon AJ. Leaf area of snap bean (Phaseolus vulgaris L.) according to leaf dimensions. Semina: Ciências Agrárias, Londrina. 2012. 33:(1):2491-2500. doi: 10.5433/1679-0359.2012v33Supl1p2491 .
    [Google Scholar]
  22. Oudah M, Shamsham S. Soil fertilization and plant nutrition. Practical part. Books and Press Directorate. Al-Bath University. 2007; 290pp. [عودة، محمود، وشمشم، سمير. خصوبة التربة وتغذية النبات- الجزء العملي- مديرية الكتب والمطبوعات- جامعة البعث. 290 صفحة؛ 2007].
  23. Al-Rhayeh Q. Improvement of biological efficiency of organic manure, and its effects on tomato corky root disease (Pyrenochaeta lycopersici). Ph.D. dissertation. Plant Protection Department. Faculty of Agriculture Engineering, Aleppo University 2015, 139pp. [الرحية، قصي. تحسين الكفاءة الحيوية للسماد العضوي وتأثيرها في مرض تفلن جذور البندورة Pyrenochaeta lycopersici. أطروحة دكتوراه. قسم وقاية النبات. جامعة حلب، سوريا. 139 صفحة؛ 2015].
  24. Pane MA, Damanik MMB, Sitorus B. Pemberian Bahan Organik Kompos Jerami Padi dan Abu Sekam Padi dalam Memperbaiki Sifat Kimia Tanah Ultisol Serta Pertumbuhan Tanaman Jagung (Zea mays L.). Journal Online Agroekoteknologi, 2014; 2:(4):1426-1432.https://repositori.usu.ac.id/handle/123456789/51820
    [Google Scholar]
  25. Parnata A. Meningkatkan Hasil Panen dengan Pupuk Organik. PT Agromedia Pustaka. Jakarta, 146pp; 2010.
    [Google Scholar]
  26. Mehta AB, Palni U, Franke-Whittle IH, Sharma AK. Compost: Its role mechanism and impact on reducing soil-borne plant diseases. Waste Management, 2014; 34: 607-622. doi: 10.1016/j.wasman.2013.11.012
    [Google Scholar]
  27. El-Masry MH, Khalil AI, Hassouna MS, Ibrahim HAH. In Situ and vivo suppressive effect of agricultural compost and their water extracts on some phytopathogenic fungi world. World Journal of Microbiology and Biotechnology, 2002; 18: 551-558. https://doi.org/10.1023/A:1016302729218
    [Google Scholar]
  28. Al-Samaraii FH. Comparison between soil disinfestation types and the role of nonpathogenic fungi in control of some roots diseases. M.Sc. Thesis. Faculty of Agriculture. Baghdad University. 1986; 74pp. [السامرائي، فاضل حسن ياسين. مُقارنة أنماط مُختلفة من تعقيم الترب ودور الفطريات اللاإمراضية في مُقاومة بعض أمراض الجذور. رسالة ماجستير كلية الزراعة. جامعة بغداد. 74 صفحة، 1986].
  29. Abbasi PA, All-Dahmani J, Sahin F, Hoitink HAJ, Miller SA. Effect of compost amendment on disease severity and yield of tomato in conventional and organic production systems. Plant Disease, 2002; 86: 156-161. doi: 10.1094/PDIS.2002.86.2.156
    [Google Scholar]
  30. Jardine D.J, Charcoa rot of soybean. Soybean Research, Plant patholog (leaflet), 1-2; 2003.
    [Google Scholar]
  31. Ringer CE, Millner PD, Teerlinck LM, Lyman BW. Suppression of seedling damping-off disease in potting mix containing animal manure composts. Compost Science and Utilization; 1997; 5: 6-14. doi: 10.1080/1065657X.1997.10701869
    [Google Scholar]
  32. Lazarovits G. Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Canadian Journal of Plant Pathology, 2001; 23: 1-7. doi: y
    [Google Scholar]
  33. Hasan MS, ElMaliky BGAlKuity AS. Used of animal manners and Trichoderma harzianum for control Pythium aphenidermatum on cucumber. Journal Iraq Agriculture. 2003; 8:(3):96-103. [حسن، محمد صادق؛ المالكي، بشرى جبر؛ الكويتي، عبد الإله صادق. استعمال المخلفات الحيوانية والفطر Trichoderma harzianum في مكافحة الفطر Pythium aphanidermatum على الخيار. مجلة الزراعة العراقية، 2003؛ 8(3):93-96].
    [Google Scholar]
  34. Hoitink HAJ, Grebus ME. Status of biological control of plant diseases with composts. Compost Science and Utilization, 1994; 2: 6-12. doi: 10.1080/1065657X.1994.10771134
    [Google Scholar]
  35. Singh V, Mawar R, Lodha S. Combined effects of biocontrol agents and soil amendments on soil microbial populations, plant growth and incidence of charcoal rot of cowpea and wilt of cumin. Phytopathologia Mediterranea, 2012; 51:307-316.doi: 10.14601/Phytopathol_Mediterr-9474
    [Google Scholar]
  36. Bais HP, Fall R, Vianco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactant production. Plant Physiology, 2004; 134:307–319. doi: 10.1104/pp.103.028712
    [Google Scholar]
  37. Saad AA. Studying mechanisms of Tichoderma harzianum against some phytopathogenic fungi. M.Sc. Thesis. Faculty of Agriculture, Omer Al-Mukhtar University 2020, 114pp. [سعد، آمنة عبد الحميد. دراسة أليات الفطر Trichoderma harzianum ضد بعض الفطريات المُمْرضة للنبات. رسالة ماجستير. كلية الزراعة. جامعة عمر المختار. 114 صفحة؛ 2020].
  38. Krewulak HD, Vogel HJ. Structural biology of bacterial iron uptake. Biochemistry and Biophysicus. Acta, 2008;1778:1781-804. doi: 10.1016/j.bbamem.2007.07.026
    [Google Scholar]
  39. Gunam IBW, Wayan RA, dan Id. BNSD. Produksi Selulase Kasar Dari Kapang Trichoderma viridae dengan Perlakuan Konsentrasi Substrat Ampas Tebu dan Lama Fermentasi. Journal Biologi Udayana, 2011; 15:(2):29–33. http://ojs.unud.ac.id/index.php/BIO
    [Google Scholar]
  40. Yedidia I, Benhamou N, Chet I. Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Applied Environment Microbiology, 1999; 65:1061–1070. doi: 10.1128/AEM.65.3.1061-1070.1999
    [Google Scholar]
  41. Gerzabek MH, Kirchmann H, Pichlmayer F. Reponse of soil aggregate stability to manure amendements in the ultuna Long-term soil organic matter experiment. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 1995; 158: 257-260. doi: https://doi.org/10.1002/jpln.19951580308
    [Google Scholar]
  42. Leifeld J, Siebert S, Kögel-Knabner I. Changes in the chemical composition of soil organic matter after application of compost. European Journal of Soil Science, 2002; 53:299-309. doi: 10.1046/j.1351-0754.2002.00453.x
    [Google Scholar]
  43. Alori ET, Olaniyan FT, Adekiya AO, Ayorinde BB, Daramola FY, Abiodun Joseph A, Adegbite KA, Ibaba AL, Aremu CO, Babalola OO. Response of soil microbial community (Bacteria and Fungi) to organic and inorganic amendments using tomato as a test crop. Air, Soil and Water Research, 2023, 16: 1–13. doi: 10.1177/11786221231214063
    [Google Scholar]
/content/journals/10.5339/ajsr.2025.13
Loading
/content/journals/10.5339/ajsr.2025.13
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error