1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

Ground Granulated Blast Furnace Slag (GGBFS) is a byproduct in the manufacture of pig iron, which contains almost the same chemical compositions as cement. As a new method for activation of GGBFS, a simple sonochemical route was developed to synthesize nanoparticles of GGBFS. Chemical composition of the GGBFS sample was characterized using X-ray fluorescence (XRF). Crystallinity, morphology and reactivity of the GGBFS samples were compared before and after the sonochemical process, by using Powder X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermal Gravimetry and Differential Thermal Analysis (TG/DTA). Based on the DTG results, Nano GGBFS showed a superior reactivity compared with the bulk form. Therefore, sonochemistry is an appropriate method for the activation of cement additives.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.29
2013-11-01
2020-09-19
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.29.html?itemId=/content/journals/10.5339/connect.2013.29&mimeType=html&fmt=ahah

References

  1. Oner A, Akyuz S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos. 2007; 29:6:505514.
    [Google Scholar]
  2. Yang EH, Yang YZ, Li VC. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness. ACI Mater J. 2007; 104:6:620628.
    [Google Scholar]
  3. Shi H-S, Xu B-W, Zhou X-C. Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater. 2009; 23:5:19801985.
    [Google Scholar]
  4. Chidiac SE, Panesar DK. Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cem Concr Compos. 2008; 30:2:6371.
    [Google Scholar]
  5. Ravikumar D, Peethamparan S, Neithalath N. Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cem Concr Compos. 2010; 32:6:399410.
    [Google Scholar]
  6. Standard Terminology Relating to Concrete and Concrete Aggregates. American Society for Testing and Materials. ASTM C125, 1993.
  7. Duran Atiş C, Bilim C. Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Build Environ. 2007; 42:8:30603065.
    [Google Scholar]
  8. Shi C, Day RL. Some factors affecting early hydration of alkali-slag cements. Cem Concr Res. 1996; 26:3:439447.
    [Google Scholar]
  9. Caijun S, Yinyu L. Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem Concr Res. 1989; 19:4:527533.
    [Google Scholar]
  10. Binici H, Aksogan O, Cagatay IH, Tokyay M, Emsen E. The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol. 2007; 177:3:140147.
    [Google Scholar]
  11. Binici H, Aksogan O, Kaplan H. A study on cement mortars incorporating plain Portland cement (PPC), ground granulated blast-furnace slag (GGBFS) and basaltic pumice. Indian J Eng Mater Sci. 2005; 12:3:214220.
    [Google Scholar]
  12. Binici H, Çağatay İH, Tokyay M, Kose MM. The early heat of hydration of blended cements incorporating GGBFS and ground basaltic pumice (GBP). Int J Phys Sci. 2006; 1:3:112120.
    [Google Scholar]
  13. Binici H, Aksoğan O. Sulfate resistance of plain and blended cement. Cem Concr Compos. 2006; 28:1:3946.
    [Google Scholar]
  14. Binici H, Kaplan H, Yılmaz S. Influence of marble and limestone dusts as additives on some mechanical properties of concrete. Sci Res Essays. 2007; 2:9:372379.
    [Google Scholar]
  15. Binici H. Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Constr Build Mater. 2007; 21:6:11911197.
    [Google Scholar]
  16. Binici H, Temiz H, Köse MM. The effect of fineness on the properties of the blended cements incorporating ground granulated blast furnace slag and ground basaltic pumice. Constr Build Mater. 2007; 21:5:11221128.
    [Google Scholar]
  17. Binici H, Cagatay IH, Shah T, Kapur S. Mineralogy of plain Portland and blended cement pastes. Build Environ. 2008; 43:7:13181325.
    [Google Scholar]
  18. Binici H, Aksogan O, Görür EB, Kaplan H, Bodur MN. Performance of ground blast furnace slag and ground basaltic pumice concrete against seawater attack. Constr Build Mater. 2008; 22:7:15151526.
    [Google Scholar]
  19. Binici H, Shah T, Aksogan O, Kaplan H. Durability of concrete made with granite and marble as recycle aggregates. J Mater Process Tech. 2008; 208:1-3:299308.
    [Google Scholar]
  20. Binici H, Aksogan O, Gorur EB, Kaplan H, Bodur MN. Hydro-abrasive erosion of concrete incorporating ground blast-furnace slag and ground basaltic pumice. Constr Build Mater. 2009; 23:2:804811.
    [Google Scholar]
  21. Subasi A, Yilmaz AS, Binici H. Prediction of early heat of hydration of plain and blended cements using neuro-fuzzy modelling techniques. Expert Syst Appl. 2009; 36:3:49404950.
    [Google Scholar]
  22. Binici H, Kaydelen C, Cagatay İH, Tokyay M, Kaplan H. Genetic expression programming for prediction of heat of hydration of the blended cements. Sci Res Essays. 2009; 4:2:98106.
    [Google Scholar]
  23. Binici H. The use of ground silica sand, ground granulated blast furnace slag and ground basaltic pumice in cementitious adhesives for tiles. Int J Mater Res. 2011; 102:12:14991502.
    [Google Scholar]
  24. Binici H, Kapur S, Arocena J, Kaplan H. The sulphate resistance of cements containing red brick dust and ground basaltic pumice with sub-microscopic evidence of intra-pore gypsum and ettringite as strengtheners. Cem Concr Compos. 2012; 34:2:279287.
    [Google Scholar]
  25. Binici H, Durgun MY, Rızaoğlu T, Koluçolak M. Investigation of durability properties of concrete pipes incorporating blast furnace slag and ground basaltic pumice as fine aggregates. Sci Iran. 2012; 19:3:366372.
    [Google Scholar]
  26. Binici H, Aksogan O, Durgun MY. Corrosion of basaltic pumice, colemanite, barite and blast furnace slag coated rebars in concretes. Constr Build Mater. 2012; 37::629637.
    [Google Scholar]
  27. Gedanken A. Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem. 2004; 11:2:4755.
    [Google Scholar]
  28. Askarinejad A, Morsali A. Synthesis and characterization of mercury oxide unusual nanostructures by ultrasonic method. Chem Eng J. 2009; 153:1-3:183186.
    [Google Scholar]
  29. Askarinejad A, Morsali A. Syntheses and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater Lett. 2008; 62:3:478482.
    [Google Scholar]
  30. Askarinejad A, Morsali A. Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4 . Ultrason Sonochem. 2009; 16:1:124131.
    [Google Scholar]
  31. Alavi MA, Morsali A. Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method. Ultrason Sonochem. 2010; 17:1:132138.
    [Google Scholar]
  32. Darvishi Z, Morsali A. Sonochemical preparation of palygorskite nanoparticles. Appl Clay Sci. 2011; 51:1-2:5153.
    [Google Scholar]
  33. Darvishi Z, Morsali A. Synthesis and characterization of Nano-bentonite by sonochemical method. Ultrason Sonochem. 2011; 18:1:238242.
    [Google Scholar]
  34. Monzó J, Martínez-Velandia D, Payá J, Borrachero MV. Effect of sonication on the reactivity of silica fume in Portland cement mortars. Adv Cem Res. 2011; 23:1:2331.
    [Google Scholar]
  35. Swamy RN. Cement Replacement Materials: Concrete Technology and Design. volume 3. London: Surry University Press 1986.
    [Google Scholar]
  36. Bentz DP. Influence of water-to-cement ratio on hydration kinetics: Simple models based on spatial considerations. Cem Concr Res. 2006; 36:2:238244.
    [Google Scholar]
  37. Mazloom M, Ramezanianpour AA, Brooks JJ. Effect of silica fume on mechanical properties of high-strength concrete. Cem Concr Compos. 2004; 26:4:347357.
    [Google Scholar]
  38. Donatello S, Tyrer M, Cheeseman CR. Comparison of test methods to assess pozzolanic activity. Cem Concr Compos. 2010; 32:2:121127.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.29
Loading
/content/journals/10.5339/connect.2013.29
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error