1887
Volume 2012, Issue 1
  • E-ISSN: 2223-506X

Abstract

We present a geometric, model-independent, argument that aims to explain why the Tsallis entropy describes systems exhibiting “weak chaos”, namely systems whose underlying dynamics has vanishing largest Lyapunov exponent. Our argument relies on properties of a deformation map of the reals induced by the Tsallis entropy, and its conclusion agrees with all currently known results.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2012.12
2013-09-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/connect/2012/1/connect.2012.12.html?itemId=/content/journals/10.5339/connect.2012.12&mimeType=html&fmt=ahah

References

  1. [1]. Tsallis   C. . Possible generalization of Boltzmann-Gibbs statistics. . J Stat Phys . 1988; ;52: : 479
    [Google Scholar]
  2. [2]. Tsallis   C. . Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World . New York, NY: : Springer;   2009; ;
    [Google Scholar]
  3. [3]. Boltzmann   L. . ber die Beziehung eines allgemeine mechanischen Satzes zum zweiten Haupsatze der Warmetheorie. . Acad Wissen Wien Math-Naturwissen . 1877; ;75: : 67
    [Google Scholar]
  4. [4]. Einstein   A. . Theorie der Opaleszenz von homogen Flussigkeiten und Flussigkeits- gemischen in der Nale des kritischen Zustandes. . Ann der Phys . 1910; ;33: : 1275
    [Google Scholar]
  5. [5]. Cohen   EGD. . Boltzmann and Einstein: statistics and dynamics – an unsolved problem. . Pramana . 2005; ;64: : 635
    [Google Scholar]
  6. [6]. Gallavotti   G. . Statistical Mechanics: A Short Treatise . Berlin: : Springer;   1999; ;
    [Google Scholar]
  7. [7]. Grassberger   P., , Scheunert   M. . Some more universal scaling laws for critical mappings. . J Stat Phys . 1981; ;26: : 697
    [Google Scholar]
  8. [8]. Anania   G., , Politi   A. . Dynamical behaviour at the onset of chaos. . Europhys Lett . 1988; ;7: : 119
    [Google Scholar]
  9. [9]. Hata   H., , Horita   T., , Mori   H. . Dynamic description of the critical 2 attractor and 2 m -band chaos. . Prog Theor Phys . 1989; ;82: : 897
    [Google Scholar]
  10. [10]. Mori   H., , Hata   H., , Horita   T., , Kobayashi   T. . Statistical mechanics of dynamical systems. . Prog Theor Phys . 1989; ;99: Suppl : 1
    [Google Scholar]
  11. [11]. Tsallis   C. . Some open points in nonextensive statistical mechanics. . Int J Bifurcation Chaos . 2012; ;22: 9 : 1230030 . arXiv:1102.2408v1
    [Google Scholar]
  12. [12]. Tsallis   C., , Plastino   AR., , Zheng   W-M. . Power-law sensitivity to initial conditions – new entropic representation. . Chaos, Solitons Fractals . 1997; ;8: : 885
    [Google Scholar]
  13. [13]. Baldovin   F., , Robledo   A. . Sensitivity to initial conditions at bifurcations in one- dimensional nonlinear maps: rigorous nonextensive solutions. . Europhys Lett . 2002; ;60: : 518
    [Google Scholar]
  14. [14]. Baldovin   F., , Robledo   A. . Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics. . Phys Rev E . 2002; ;66: : R045104
    [Google Scholar]
  15. [15]. Mayoral   E., , Robledo   A. . Tsallis' q index and Mori's q phase transitions at the edge of chaos. . Phys Rev E . 2005; ;72: : 026209
    [Google Scholar]
  16. [16]. Robledo   A. . Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points. . Physica A . 2006; ;370: : 449
    [Google Scholar]
  17. [17]. Cheeger   J., , Ebin   DG. . Comparison Theorems in Riemannian Geometry . Providence, RI: : AMS Chelsea;   1975; ;
    [Google Scholar]
  18. [18]. Sakai   T. . Riemannian Geometry . Providence, RI: : Amer. Math. Soc;   1996; ;
    [Google Scholar]
  19. [19]. Gromov   M. . Sign and geometric meaning of curvature. . Milan J Math . 1994; ;61: : 9
    [Google Scholar]
  20. [20]. Gromov   M. . Metric Structures for Riemannian and Non-Riemannian Spaces . Basel: : Birkhäuser;   1999; ;
    [Google Scholar]
  21. [21]. Gibbs   JW. . Elementary Principles in Statistical Mechanics - Developed with Especial Reference to the Rational Foundation of Thermodynamics . New Haven, CT: : Yale University Press;   1948; ;
    [Google Scholar]
  22. [22]. Jaynes   ET. . Foundations of probability theory and statistical mechanics. . In: Bunge   M. , ed. Delaware Seminar in the Foundations of Physics . New York: : Springer;   1967; ;
    [Google Scholar]
  23. [23]. Jaynes   ET. . Gibbs vs. Boltzmann Entropies. . Amer J Phys . 1965; ;33: : 391
    [Google Scholar]
  24. [24]. Katok   A., , Hasselblatt   B. . Introduction to the Modern Theory of Dynamical Systems . Cambridge: : Cambridge University Press;   1995; ;
    [Google Scholar]
  25. [25]. Barreira   L., , Pesin   Y. . Dynamics of Systems with Nonzero Lyapunov Exponents . Cambridge: : Cambridge University Press;   2007; ;
    [Google Scholar]
  26. [26]. Lederhendler   A., , Mukamel   D. . Long-Range Correlations and Ensemble Inequivalence in a Generalized ABC model. . Phys Rev Lett . 2010; ;105: : 150602
    [Google Scholar]
  27. [27]. Bouchet   F., , Gupta   S., , Mukamel   D. . Thermodynamics and dynamics of systems with long-range interactions. . Physica A . 2010; ;389: : 4389
    [Google Scholar]
  28. [28]. Costeniuc   M., , Ellis   RS., , Touchette   H., , Turkington   B. . Genralized canonical ensem- bles and ensemble inequivalence. . Phys Rev E . 2006; ;73: : 026105
    [Google Scholar]
  29. [29]. Paternain   GP. . Geodesic Flows . Basel: : Birkhäuser;   1999; ;
    [Google Scholar]
  30. [30]. Kalogeropoulos   N. . Distributivity and deformation of the reals from Tsallis entropy. . Physica A . 2012; ;391: : 1120
    [Google Scholar]
  31. [31]. Petit Lobão   TC., , Cardoso   PGS., , Pinho   STR., , Borges   EP. . Some properties of deformed q-numbers. . Braz J Phys . 2009; ;39: : 402
    [Google Scholar]
  32. [32]. Alexandrov   AD. . A theorem on triangles in metric space and some of its applications. . Trudy Mat Inst Steklov . 1951; ;38: : 5– 23
    [Google Scholar]
  33. [33]. Berestovskij   VN., , Nikolaev   IG. . Multidimensional generalized riemannian spaces. . In: Reshetnyak   YG. , ed. Geometry IV: Nonregular Riemannian Geometry . Vol. 70 . Berlin: : Springer;   1993; ; . Encyclopaedia of Mathematical Sciences
    [Google Scholar]
  34. [34]. Gromov   M. . Asymptotic invariants of infinite groups. . In: Niblo   G., Roller   M. , eds. Geometric Group Theory . Vol. 2 . Cambridge: : Cambridge University Press;   1993; ; . London Mathematical Society Lecture Notes Series 182
    [Google Scholar]
  35. [35]. Gersten   SM. . Quadratic divergence of geodesics in CAT(0) spaces. . Geom Funct Anal . 1994; ;4: : 37
    [Google Scholar]
  36. [36]. Kalogeropoulos   N. . Tsallis entropy induced metrics and CAT(k) spaces. . Physica A . 2012; ;391: : 3435
    [Google Scholar]
  37. [37]. Fukaya   K. . Hausdorff convergence of Riemannian manifolds and its applications. . In: Ochiai   T. , ed. Recent Topics in Differential and Analytic Geometry . Vol. 18 . Tokyo: : Kinokuniya;   1990; ; : 143 . Advanced Studies in Pure Mathematics
    [Google Scholar]
  38. [38]. Baldovin   F., , Tsallis   C., , Schulze   B. . Nonstandard entropy production in the standard map. . Physica A . 2003; ;320: : 184
    [Google Scholar]
  39. [39]. Baldovin   F., , Brigatti   E., , Tsallis   C. . Quasi-stationary states in low-dimensional Hamiltonian systems. . Phys Lett A . 2004; ;320: : 254
    [Google Scholar]
  40. [40]. Añaños   GFJ., , Baldovin   F., , Tsallis   C. . Anomalous sensitivity to initial conditions and entropy production in standard maps: nonextensive approach. . Eur Phys J B . 2005; ;46: : 409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2012.12
Loading
  • Article Type: Research Article
Keyword(s): 02.10.Hh , 05.45.Df , 64.60.al , lyapunov exponents , nonextensive parameter , Tsallis entropy and weak chaos
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error