1887
Volume 2012, Issue 1
  • EISSN: 2223-506X

Abstract

We present a geometric, model-independent, argument that aims to explain why the Tsallis entropy describes systems exhibiting “weak chaos”, namely systems whose underlying dynamics has vanishing largest Lyapunov exponent. Our argument relies on properties of a deformation map of the reals induced by the Tsallis entropy, and its conclusion agrees with all currently known results.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2012.12
2013-09-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/connect/2012/1/connect.2012.12.html?itemId=/content/journals/10.5339/connect.2012.12&mimeType=html&fmt=ahah

References

  1. Tsallis C. Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys. 1988; 52::479
    [Google Scholar]
  2. Tsallis C. Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World. New York, NY: Springer 2009;
    [Google Scholar]
  3. Boltzmann L. ber die Beziehung eines allgemeine mechanischen Satzes zum zweiten Haupsatze der Warmetheorie. Acad Wissen Wien Math-Naturwissen. 1877; 75::67
    [Google Scholar]
  4. Einstein A. Theorie der Opaleszenz von homogen Flussigkeiten und Flussigkeits- gemischen in der Nale des kritischen Zustandes. Ann der Phys. 1910; 33::1275
    [Google Scholar]
  5. Cohen EGD. Boltzmann and Einstein: statistics and dynamics – an unsolved problem. Pramana. 2005; 64::635
    [Google Scholar]
  6. Gallavotti G. Statistical Mechanics: A Short Treatise. Berlin: Springer 1999;
    [Google Scholar]
  7. Grassberger P, Scheunert M. Some more universal scaling laws for critical mappings. J Stat Phys. 1981; 26::697
    [Google Scholar]
  8. Anania G, Politi A. Dynamical behaviour at the onset of chaos. Europhys Lett. 1988; 7::119
    [Google Scholar]
  9. Hata H, Horita T, Mori H. Dynamic description of the critical 2 attractor and 2 m -band chaos. Prog Theor Phys. 1989; 82::897
    [Google Scholar]
  10. Mori H, Hata H, Horita T, Kobayashi T. Statistical mechanics of dynamical systems. Prog Theor Phys. 1989; 99:Suppl:1
    [Google Scholar]
  11. Tsallis C. Some open points in nonextensive statistical mechanics. Int J Bifurcation Chaos. 2012; 22:9:1230030. arXiv:1102.2408v1
    [Google Scholar]
  12. Tsallis C, Plastino AR, Zheng W-M. Power-law sensitivity to initial conditions – new entropic representation. Chaos, Solitons Fractals. 1997; 8::885
    [Google Scholar]
  13. Baldovin F, Robledo A. Sensitivity to initial conditions at bifurcations in one- dimensional nonlinear maps: rigorous nonextensive solutions. Europhys Lett. 2002; 60::518
    [Google Scholar]
  14. Baldovin F, Robledo A. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics. Phys Rev E. 2002; 66::R045104
    [Google Scholar]
  15. Mayoral E, Robledo A. Tsallis' q index and Mori's q phase transitions at the edge of chaos. Phys Rev E. 2005; 72::026209
    [Google Scholar]
  16. Robledo A. Incidence of nonextensive thermodynamics in temporal scaling at Feigenbaum points. Physica A. 2006; 370::449
    [Google Scholar]
  17. Cheeger J, Ebin DG. Comparison Theorems in Riemannian Geometry. Providence, RI: AMS Chelsea 1975;
    [Google Scholar]
  18. Sakai T. Riemannian Geometry. Providence, RI: Amer. Math. Soc 1996;
    [Google Scholar]
  19. Gromov M. Sign and geometric meaning of curvature. Milan J Math. 1994; 61::9
    [Google Scholar]
  20. Gromov M. Metric Structures for Riemannian and Non-Riemannian Spaces. Basel: Birkhäuser 1999;
    [Google Scholar]
  21. Gibbs JW. Elementary Principles in Statistical Mechanics - Developed with Especial Reference to the Rational Foundation of Thermodynamics. New Haven, CT: Yale University Press 1948;
    [Google Scholar]
  22. Jaynes ET. Foundations of probability theory and statistical mechanics. In: Bunge M, ed. Delaware Seminar in the Foundations of Physics. New York: Springer 1967;
    [Google Scholar]
  23. Jaynes ET. Gibbs vs. Boltzmann Entropies. Amer J Phys. 1965; 33::391
    [Google Scholar]
  24. Katok A, Hasselblatt B. Introduction to the Modern Theory of Dynamical Systems. Cambridge: Cambridge University Press 1995;
    [Google Scholar]
  25. Barreira L, Pesin Y. Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge: Cambridge University Press 2007;
    [Google Scholar]
  26. Lederhendler A, Mukamel D. Long-Range Correlations and Ensemble Inequivalence in a Generalized ABC model. Phys Rev Lett. 2010; 105::150602
    [Google Scholar]
  27. Bouchet F, Gupta S, Mukamel D. Thermodynamics and dynamics of systems with long-range interactions. Physica A. 2010; 389::4389
    [Google Scholar]
  28. Costeniuc M, Ellis RS, Touchette H, Turkington B. Genralized canonical ensem- bles and ensemble inequivalence. Phys Rev E. 2006; 73::026105
    [Google Scholar]
  29. Paternain GP. Geodesic Flows. Basel: Birkhäuser 1999;
    [Google Scholar]
  30. Kalogeropoulos N. Distributivity and deformation of the reals from Tsallis entropy. Physica A. 2012; 391::1120
    [Google Scholar]
  31. Petit Lobão TC, Cardoso PGS, Pinho STR, Borges EP. Some properties of deformed q-numbers. Braz J Phys. 2009; 39::402
    [Google Scholar]
  32. Alexandrov AD. A theorem on triangles in metric space and some of its applications. Trudy Mat Inst Steklov. 1951; 38::523
    [Google Scholar]
  33. Berestovskij VN, Nikolaev IG. Multidimensional generalized riemannian spaces. In: Reshetnyak YG, ed. Geometry IV: Nonregular Riemannian Geometry. Vol. 70. Berlin: Springer 1993;. Encyclopaedia of Mathematical Sciences
    [Google Scholar]
  34. Gromov M. Asymptotic invariants of infinite groups. In: Niblo GRoller M, eds. Geometric Group Theory. Vol. 2. Cambridge: Cambridge University Press 1993;. London Mathematical Society Lecture Notes Series 182
    [Google Scholar]
  35. Gersten SM. Quadratic divergence of geodesics in CAT(0) spaces. Geom Funct Anal. 1994; 4::37
    [Google Scholar]
  36. Kalogeropoulos N. Tsallis entropy induced metrics and CAT(k) spaces. Physica A. 2012; 391::3435
    [Google Scholar]
  37. Fukaya K. Hausdorff convergence of Riemannian manifolds and its applications. In: Ochiai T, ed. Recent Topics in Differential and Analytic Geometry. Vol. 18. Tokyo: Kinokuniya 1990;:143. Advanced Studies in Pure Mathematics
    [Google Scholar]
  38. Baldovin F, Tsallis C, Schulze B. Nonstandard entropy production in the standard map. Physica A. 2003; 320::184
    [Google Scholar]
  39. Baldovin F, Brigatti E, Tsallis C. Quasi-stationary states in low-dimensional Hamiltonian systems. Phys Lett A. 2004; 320::254
    [Google Scholar]
  40. Añaños GFJ, Baldovin F, Tsallis C. Anomalous sensitivity to initial conditions and entropy production in standard maps: nonextensive approach. Eur Phys J B. 2005; 46::409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2012.12
Loading
  • Article Type: Research Article
Keyword(s): 02.10.Hh05.45.Df64.60.allyapunov exponentsnonextensive parameterTsallis entropy and weak chaos
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error