1887
Volume 2016, Issue 2
  • E-ISSN: 2223-506X

Abstract

Three-dimensional (3D) printing is a resourceful technology that offers a large selection of solutions that are readily adaptable to tissue engineering of artificial heart valves (HVs). Different deposition techniques could be used to produce complex architectures, such as the three-layered architecture of leaflets. Once the assembly is complete, the growth of cells in the scaffold would enable the deposition of cell-specific extracellular matrix proteins. 3D printing technology is a rapidly evolving field that first needs to be understood and then explored by tissue engineers, so that it could be used to create efficient scaffolds. On the other hand, to print the HV scaffold, a basic understanding of the fundamental structural and mechanical aspects of the HV should be gained. This review is focused on alginate that can be used as a building material due to its unique properties confirmed by the successful application of alginate-based biomaterials for the treatment of myocardial infarction in humans. Within the field of biomedicine, there is a broad scope for the application of alginate including wound healing, cell transplantation, delivery of bioactive agents, such as chemical drugs and proteins, heat burns, acid reflux, and weight control applications. The non-thrombogenic nature of this polymer has made it an attractive candidate for cardiac applications, including scaffold fabrication for heart valve tissue engineering (HVTE). The next essential property of alginate is its ability to form films, fibers, beads, and virtually any shape in a variety of sizes. Moreover, alginate possesses several prime properties that make it suitable for use in free-form fabrication techniques. The first property is its ability, when dissolved, to increase the viscosity of aqueous solutions, which is particularly important in formulating extrudable mixtures for 3D printing. The second property is its ability to form gels in mild conditions, for example, by adding calcium salt to an aqueous solution of alginate. The latter property is a basis for reactive extrusion- and inkjet printing-based solid free-form fabrication. Both techniques enable the production of scaffolds for cell encapsulation, which increases the seeding efficiency of fabricated structures. The objective of this article is to review methods for the fabrication of alginate hydrogels in the context of HVTE.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2016.3
2016-04-13
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/connect/2016/2/connect.2016.3.html?itemId=/content/journals/10.5339/connect.2016.3&mimeType=html&fmt=ahah

References

  1. [1]. Bidarra   SJ., , Barrias   CC., , Granja   PL. . Injectable alginate hydrogels for cell delivery in tissue engineering. . Acta Biomater . 2014; ;10: : 1646– 1662 .
    [Google Scholar]
  2. [2]. Lee   DW., , Choi   WS., , Byun   MW., , Park   HJ., , Yu   Y-M., , Lee   CM. . Effect of gamma-irradiation on degradation of alginate. . J Agric Food Chem . 2003; ;51: : 4819– 4823 .
    [Google Scholar]
  3. [3]. Kong   HJ., , Smith   MK., , Mooney   DJ. . Designing alginate hydrogels to maintain viability of immobilized cells. . Biomaterials . 2003; ;24: : 4023– 4029 .
    [Google Scholar]
  4. [4]. Vauchel   P., , Kaas   R., , Arhaliass   A., , Baron   R., , Legrand   J. . A new process for extracting alginates from Laminaria digitata: Reactive extrusion. . Food Bioprocess Technol . 2008; ;1: : 297– 300 .
    [Google Scholar]
  5. [5]. Hay   ID., , Ur Rehman   Z., , Ghafoor   A., , Rehm   BHA. . Bacterial biosynthesis of alginates. . J Chem Technol Biotechnol . 2010; ;85: : 752– 759 .
    [Google Scholar]
  6. [6]. Lee   KY., , Rowley   JA., , Eiselt   P., , Moy   EM., , Bouhadir   KH., , Mooney   DJ. . Controlling mechanical and swelling properties of alginate hydrogels independently by cross-linker type and cross-linking density. . Macromolecules . 2000; ;33: : 4291– 4294 .
    [Google Scholar]
  7. [7]. Park   H., , Kang   S-W., , Kim   B-S., , Mooney   DJ., , Lee   KY. . Shear-reversibly crosslinked alginate hydrogels for tissue engineering. . Macromol Biosci . 2009; ;9: : 895– 901 .
    [Google Scholar]
  8. [8]. Rhim   J-W. . Physical and mechanical properties of water resistant sodium alginate films. . LWT – Food Sci Technol . 2004; ;37: : 323– 330 .
    [Google Scholar]
  9. [9]. Jianqi   H., , Hong   H., , Lieping   S., , Genghua   G. . Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. . J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg . 2002; ;60: : 1449– 1454 .
    [Google Scholar]
  10. [10]. Liberski   AR., , Delaney   JT Jr.., , Schäfer   H., , Perelaer   J., , Schubert   US. . Organ weaving: Woven threads and sheets as a step towards a new strategy for artificial organ development. . Macromol Biosci . 2011; ;11: : 1491– 1498 .
    [Google Scholar]
  11. [11]. Onoe   H., , Okitsu   T., , Itou   A., , Kato-Negishi   M., , Gojo   R., , Kiriya   D., , Sato   K., , Miura   S., , Iwanaga   S., , Kuribayashi-Shigetomi   K., , Matsunaga   YT., , Shimoyama   Y., , Takeuchi   S. . Metre-long cell-laden microfibres exhibit tissue morphologies and functions. . Nat Mater . 2013; ;12: : 584– 590 .
    [Google Scholar]
  12. [12]. Yoon   H., , Ahn   S., , Kim   G. . Three-dimensional polycaprolactone hierarchical scaffolds supplemented with natural biomaterials to enhance mesenchymal stem cell proliferation. . Macromol Rapid Commun . 2009; ;30: : 1632– 1637 .
    [Google Scholar]
  13. [13]. Swain   S., , Behera   A., , Beg   S., , Patra   CN., , Dinda   SC., , Sruti   J., , Rao   ME. . Modified alginate beads for mucoadhesive drug delivery system: An updated review of patents. . Recent Pat Drug Deliv Formul . 2012; ;6: : 259– 277 .
    [Google Scholar]
  14. [14]. Jeon   O., , Alt   DS., , Ahmed   SM., , Alsberg   E. . The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. . Biomaterials . 2012; ;33: : 3503– 3514 .
    [Google Scholar]
  15. [15]. Lee   KY., , Mooney   DJ. . Alginate: Properties and biomedical applications. . Prog Polym Sci . 2012; ;37: : 106– 126 .
    [Google Scholar]
  16. [16]. Lee   RJ., , Hinson   A., , Helgerson   S., , Bauernschmitt   R., , Sabbah   HN. . Polymer-based restoration of left ventricular mechanics. . Cell Transplant . 2013; ;22: : 529– 533 .
    [Google Scholar]
  17. [17]. Frey   N., , Linke   A., , Süselbeck   T., , Müller-Ehmsen   J., , Vermeersch   P., , Schoors   D., , Rosenberg   M., , Bea   F., , Tuvia   S., , Leor   J. . Intracoronary delivery of injectable bioabsorbable scaffold (IK-5001) to treat left ventricular remodeling after ST-elevation myocardial infarction: A first-in-man study. . Circ Cardiovasc Interv . 2014; ;7: : 806– 812 .
    [Google Scholar]
  18. [18]. Ruvinov   E., , Cohen   S. . Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: From ocean algae to patient bedside. . Adv Drug Deliv Rev . 2016; ;96: : 54– 76 .
    [Google Scholar]
  19. [19]. Cabrales   P., , Tsai   AG., , Intaglietta   M. . Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution. . Am J Physiol Heart Circ Physiol . 2005; ;288: : H1708– H1716 .
    [Google Scholar]
  20. [20]. Al-Shamkhani   A., , Duncan   R. . Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. . J Bioact Compat Polym . 1995; ;10: : 4– 13 .
    [Google Scholar]
  21. [21]. Leor   J., , Tuvia   S., , Guetta   V., , Manczur   F., , Castel   D., , Willenz   U., , Petneházy   O., , Landa   N., , Feinberg   MS., , Konen   E., , Goitein   O., , Tsur-Gang   O., , Shaul   M., , Klapper   L., , Cohen   S. . Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. . J Am Coll Cardiol . 2009; ;54: : 1014– 1023 .
    [Google Scholar]
  22. [22]. Gao   W., , Lin   T., , Li   T., , Yu   M., , Hu   X., , Duan   D. . Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: Applications in cardiac surgery. . Int J Clin Exp Med . 2013; ;6: : 259– 268 .
    [Google Scholar]
  23. [23]. Finosh   GT., , Jayabalan   M. . Regenerative therapy and tissue engineering for the treatment of end-stage cardiac failure: New developments and challenges. . Biomatter . 2012; ;2: : 1– 14 .
    [Google Scholar]
  24. [24]. Dar   A., , Shachar   M., , Leor   J., , Cohen   S. . Optimization of cardiac cell seeding and distribution in 3D porous alginate scaffolds. . Biotechnol Bioeng . 2002; ;80: : 305– 312 .
    [Google Scholar]
  25. [25]. Leor   J., , Aboulafia-Etzion   S., , Dar   A., , Shapiro   L., , Barbash   IM., , Battler   A., , Granot   Y., , Cohen   S. . Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium?.   Circulation . 2000; ;102: : III56– III61 .
    [Google Scholar]
  26. [26]. Duan   B., , Hockaday   LA., , Kang   KH., , Butcher   JT. . 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. . J Biomed Mater Res A . 2013; ;101: : 1255– 1264 .
    [Google Scholar]
  27. [27]. Chester   AH., , El-Hamamsy   I., , Butcher   JT., , Latif   N., , Bertazzo   S., , Yacoub   MH. . The living aortic valve: From molecules to function. . Glob Cardiol Sci Pract . 2014; ;2014: : 52– 77 .
    [Google Scholar]
  28. [28]. Yacoub   MH., , Takkenberg   JJM. . Will heart valve tissue engineering change the world?.   Nat Clin Pract Cardiovasc Med . 2005; ;2: : 60– 61 .
    [Google Scholar]
  29. [29]. Dohmen   PM., , Konertz   W. . Tissue-engineered heart valve scaffolds. . Ann Thorac Cardiovasc Surg Off J Assoc Thorac Cardiovasc Surg Asia . 2009; ;15: : 362– 367 .
    [Google Scholar]
  30. [30]. Dohmen   PM. . Tissue engineered aortic valve. . HSR Proc Intensive Care Cardiovasc Anesth . 2012; ;4: : 89– 93 .
    [Google Scholar]
  31. [31]. Yacoub   MH., , Kilner   PJ., , Birks   EJ., , Misfeld   M. . The aortic outflow and root: A tale of dynamism and crosstalk. . Ann Thorac Surg . 1999; ;68: : S37– S43 .
    [Google Scholar]
  32. [32]. Arjunon   S., , Rathan   S., , Jo   H., , Yoganathan   AP. . Aortic valve: Mechanical environment and mechanobiology. . Ann Biomed Eng . 2013; ;41: : 1331– 1346 .
    [Google Scholar]
  33. [33]. Hasan   A., , Ragaert   K., , Swieszkowski   W., , Selimović   S., , Paul   A., , Camci-Unal   G., , Mofrad   MR., , Khademhosseini   A. . Biomechanical properties of native and tissue engineered heart valve constructs. . J Biomech . 2014; ;47: : 1949– 1963 .
    [Google Scholar]
  34. [34]. Tara   S., , Rocco   KA., , Hibino   N., , Sugiura   T., , Kurobe   H., , Breuer   CK., , Shinoka   T. . Vessel bioengineering. . Circ J Off J Jpn Circ Soc . 2014; ;78: : 12– 19 .
    [Google Scholar]
  35. [35]. Yacoub   MH. . In search of living valve substitutes. . J Am Coll Cardiol . 2015; ;66: : 889– 891 .
    [Google Scholar]
  36. [36]. Kang   KH., , Hockaday   LA., , Butcher   JT. . Quantitative optimization of solid freeform deposition of aqueous hydrogels. . Biofabrication . 2013; ;5: : 035001 .
    [Google Scholar]
  37. [37]. Cohen   DL., , Lo   W., , Tsavaris   A., , Peng   D., , Lipson   H., , Bonassar   LJ. . Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. . Tissue Eng Part C Methods . 2011; ;17: : 239– 248 .
    [Google Scholar]
  38. [38]. Liberski   AR., , Zhang   R., , Bradley   M. . In situ nanoliter-scale polymer fabrication for flexible cell patterning. . J Assoc Lab Autom . 2009; ;14: : 285– 293 .
    [Google Scholar]
  39. [39]. Boland   T., , Tao   X., , Damon   BJ., , Manley   B., , Kesari   P., , Jalota   S., , Bhaduri   S. . Drop-on-demand printing of cells and materials for designer tissue constructs. . Mater Sci Eng C . 2007; ;27: : 372– 376 .
    [Google Scholar]
  40. [40]. Bader   A., , Schilling   T., , Teebken   OE., , Brandes   G., , Herden   T., , Steinhoff   G., , Haverich   A. . Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. . Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg . 1998; ;14: : 279– 284 .
    [Google Scholar]
  41. [41]. Xu   T., , Baicu   C., , Aho   M., , Zile   M., , Boland   T. . Fabrication and characterization of bio-engineered cardiac pseudo tissues. . Biofabrication . 2009; ;1: : 035001 .
    [Google Scholar]
  42. [42]. Lee   CSD., , Moyer   HR., , Gittens   RAI., , Williams   JK., , Boskey   AL., , Boyan   BD., , Schwartz   Z. . Regulating in vivo calcification of alginate microbeads. . Biomaterials . 2010; ;31: : 4926– 4934 .
    [Google Scholar]
  43. [43]. Place   ES., , Rojo   L., , Gentleman   E., , Sardinha   JP., , Stevens   MM. . Strontium- and zinc-alginate hydrogels for bone tissue engineering. . Tissue Eng Part A . 2011; ;17: : 2713– 2722 .
    [Google Scholar]
  44. [44]. Mørch   YA., , Donati   I., , Strand   BL., , Skjåk-Braek   G. . Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. . Biomacromolecules . 2006; ;7: : 1471– 1480 .
    [Google Scholar]
  45. [45]. Arai   K., , Iwanaga   S., , Toda   H., , Genci   C., , Nishiyama   Y., , Nakamura   M. . Three-dimensional inkjet biofabrication based on designed images. . Biofabrication . 2011; ;3: : 034113 .
    [Google Scholar]
  46. [46]. Chapron   J., , Hosney   H., , Torii   R., , Sedky   Y., , Dunya   M., , Yacoub   MH. . Lessons from detailed 3D models of the cardiac chambers after the Mustard operation. . Glob Cardiol Sci Pract . 2013; ;2013: : 49 .
    [Google Scholar]
  47. [47]. Nishiyama   Y., , Nakamura   M., , Henmi   C., , Yamaguchi   K., , Mochizuki   S., , Nakagawa   H., , Takiura   K. . Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. . J Biomech Eng . 2009; ;131: : 035001 .
    [Google Scholar]
  48. [48]. Liberski   AR., , Delaney   JT., , Schubert   US. . “One cell − one well”: A new approach to inkjet printing single cell microarrays. . ACS Comb Sci . 2011; ;13: : 190– 195 .
    [Google Scholar]
  49. [49]. Park   SA., , Lee   SH., , Kim   W. . Fabrication of hydrogel scaffolds using rapid prototyping for soft tissue engineering. . Macromol Res . 2011; ;19: : 694– 698 .
    [Google Scholar]
  50. [50]. Billiet   T., , Vandenhaute   M., , Schelfhout   J., , Van Vlierberghe   S., , Dubruel   P. . A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. . Biomaterials . 2012; ;33: : 6020– 6041 .
    [Google Scholar]
  51. [51]. Xu   M., , Wang   X., , Yan   Y., , Yao   R., , Ge   Y. . An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. . Biomaterials . 2010; ;31: : 3868– 3877 .
    [Google Scholar]
  52. [52]. Gaetani   R., , Doevendans   PA., , Metz   CHG., , Alblas   J., , Messina   E., , Giacomello   A., , Sluijter   JP. . Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. . Biomaterials . 2012; ;33: : 1782– 1790 .
    [Google Scholar]
  53. [53]. Zhao   Y., , Yao   R., , Ouyang   L., , Ding   H., , Zhang   T., , Zhang   K., , Cheng   S., , Sun   W. . Three-dimensional printing of HeLa cells for cervical tumor model in vitro. . Biofabrication . 2014; ;6: : 035001 .
    [Google Scholar]
  54. [54]. Colazzo   F., , Sarathchandra   P., , Smolenski   RT., , Chester   AH., , Tseng   Y-T., , Czernuszka   JT., , Yacoub   MH., , Taylor   PM. . Extracellular matrix production by adipose-derived stem cells: Implications for heart valve tissue engineering. . Biomaterials . 2011; ;32: : 119– 127 .
    [Google Scholar]
  55. [55]. Gimble   JM., , Katz   AJ., , Bunnell   BA. . Adipose-derived stem cells for regenerative medicine. . Circ Res . 2007; ;100: : 1249– 1260 .
    [Google Scholar]
  56. [56]. Sales   VL., , Mettler   BA., , Engelmayr   GC., , Aikawa   E., , Bischoff   J., , Martin   DP., , Exarhopoulos   A., , Moses   MA., , Schoen   FJ., , Sacks   MS., , Mayer   JE Jr..   Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. . Tissue Eng Part A . 2010; ;16: : 257– 267 .
    [Google Scholar]
  57. [57]. Li   S., , Xiong   Z., , Wang   X., , Yan   Y., , Liu   H., , Zhang   R. . Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. . J Bioact Compat Polym . 2009; ;24: : 249– 265 .
    [Google Scholar]
  58. [58]. Huang   Y., , He   K., , Wang   X. . Rapid prototyping of a hybrid hierarchical polyurethane-cell/hydrogel construct for regenerative medicine. . Mater Sci Eng C . 2013; ;33: : 3220– 3229 .
    [Google Scholar]
  59. [59]. Duffy   CRE., , Zhang   R., , How   S-E., , Lilienkampf   A., , Tourniaire   G., , Hu   W., , West   CC., , de Sousa   P., , Bradley   M. . A high-throughput polymer microarray approach for identifying defined substrates for mesenchymal stem cells. . Biomater Sci . 2014; ;2: : 1683– 1692 .
    [Google Scholar]
  60. [60]. Cohen   DL., , Malone   E., , Lipson   H., , Bonassar   LJ. . Direct freeform fabrication of seeded hydrogels in arbitrary geometries. . Tissue Eng . 2006; ;12: : 1325– 1335 .
    [Google Scholar]
  61. [61]. Luo   Y., , Lode   A., , Gelinsky   M. . Direct plotting of three-dimensional hollow fiber scaffolds based on concentrated alginate pastes for tissue engineering. . Adv Healthc Mater . 2013; ;2: : 777– 783 .
    [Google Scholar]
  62. [62]. Lee   J-S., , Hong   JM., , Jung   JW., , Shim   J-H., , Oh   J-H., , Cho   D-W. . 3D printing of composite tissue with complex shape applied to ear regeneration. . Biofabrication . 2014; ;6: : 024103 .
    [Google Scholar]
  63. [63]. Schuurman   W., , Khristov   V., , Pot   MW., , van Weeren   PR., , Dhert   WJA., , Malda   J. . Bioprinting of hybrid tissue constructs with tailorable mechanical properties. . Biofabrication . 2011; ;3: : 021001 .
    [Google Scholar]
  64. [64]. Yeo   M., , Kim   G. . Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration. . J Mater Chem B . 2013; ;2: : 314– 324 .
    [Google Scholar]
  65. [65]. Paranya   G., , Vineberg   S., , Dvorin   E., , Kaushal   S., , Roth   SJ., , Rabkin   E., , Schoen   FJ., , Bischoff   J. . Aortic valve endothelial cells undergo transforming growth factor-β-mediated and non-transforming growth factor-β-mediated transdifferentiation in vitro. . Am J Pathol . 2001; ;159: : 1335– 1343 .
    [Google Scholar]
  66. [66]. Hong   S., , Sycks   D., , Chan   HF., , Lin   S., , Lopez   GP., , Guilak   F., , Leong   KW., , Zhao   X. . 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. . Adv Mater Deerfield Beach Fla . 2015; ;27: : 4035– 4040 .
    [Google Scholar]
  67. [67]. Hockaday   LA., , Kang   KH., , Colangelo   NW., , Cheung   PYC., , Duan   B., , Malone   E., , Wu   J., , Girardi   LN., , Bonassar   LJ., , Lipson   H., , Chu   CC., , Butcher   JT. . Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. . Biofabrication . 2012; ;4: : 035005 .
    [Google Scholar]
  68. [68]. Tamayol   A., , Akbari   M., , Annabi   N., , Paul   A., , Khademhosseini   A., , Juncker   D. . Fiber-based tissue engineering: Progress, challenges, and opportunities. . Biotechnol Adv . 2013; ;31: : 669– 687 .
    [Google Scholar]
  69. [69]. Leng   L., , McAllister   A., , Zhang   B., , Radisic   M., , Günther   A. . Mosaic hydrogels: One-step formation of multiscale soft materials. . Adv Mater Deerfield Beach Fla . 2012; ;24: : 3650– 3658 .
    [Google Scholar]
  70. [70]. Introduction — Blender Reference Manual [Internet]. [http://www.blender.org/manual/getting_started/about_blender/introduction.html]. Accessed 23 November 2015 .
  71. [71]. ABSTRACT – SFF08_Cohen.pdf [Internet]. [http://creativemachines.cornell.edu/papers/SFF08_Cohen.pdf]. Accessed 7 February 2016 .
  72. [72]. Tan   Y., , Richards   DJ., , Trusk   TC., , Visconti   RP., , Yost   MJ., , Kindy   MS., , Drake   CJ., , Argraves   WS., , Markwald   RR., , Mei   Y. . 3D printing facilitated scaffold-free tissue unit fabrication. . Biofabrication . 2014; ;6: : 024111 .
    [Google Scholar]
  73. [73]. Bakarich   SE., , Panhuis   M in het., , Beirne   S., , Wallace   GG., , Spinks   GM. . Extrusion printing of ionic–covalent entanglement hydrogels with high toughness. . J Mater Chem B . 2013; ;1: : 4939– 4946 .
    [Google Scholar]
  74. [74]. Rouillard   AD., , Berglund   CM., , Lee   JY., , Polacheck   WJ., , Tsui   Y., , Bonassar   LJ., , Kirby   BJ. . Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability. . Tissue Eng Part C Methods . 2011; ;17: : 173– 179 .
    [Google Scholar]
  75. [75]. Iwami   K., , Noda   T., , Ishida   K., , Morishima   K., , Nakamura   M., , Umeda   N. . Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel. . Biofabrication . 2010; ;2: : 014108 .
    [Google Scholar]
  76. [76]. Vervaet E. . The Suspended Deposition Project by Brian Harm is a new 3D printing concept (VIDEO) [Internet]. 3D Printing Event. . [http://www.3dprintingevent.com/the-suspended-deposition-project-by-brian-harm-is-a-new-3d-printing-concept-video/]. Accessed 1 September 2014 .
  77. [77]. Hinton   TJ., , Jallerat   Q., , Palchesko   RN., , Park   JH., , Grodzicki   MS., , Shue   H-J., , Ramadan   MH., , Hudson   AR., , Feinberg   AW. . Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. . Sci Adv . 2015; ;1: : e1500758 .
    [Google Scholar]
  78. [78]. Bhattacharjee   T., , Zehnder   SM., , Rowe   KG., , Jain   S., , Nixon   RM., , Sawyer   WG., , Angelini   TE. . Writing in the granular gel medium. . Sci Adv . 2015; ;1: : e1500655 .
    [Google Scholar]
  79. [79]. Cui   J., , Wang   M., , Zheng   Y., , Rodríguez Muñiz   GM., , del Campo   A. . Light-triggered cross-linking of alginates with caged Ca2+. . Biomacromolecules . 2013; ;14: : 1251– 1256 .
    [Google Scholar]
  80. [80]. Bruchet   M., , Mendelson   NL., , Melman   A. . Photochemical patterning of ionically cross-linked hydrogels. . Processes . 2013; ;1: : 153– 166 .
    [Google Scholar]
  81. [81]. Tønnesen   HH., , Karlsen   J. . Alginate in drug delivery systems. . Drug Dev Ind Pharm . 2002; ;28: : 621– 630 .
    [Google Scholar]
  82. [82]. Eral   HB., , López-Mejías   V., , O'Mahony   M., , Trout   BL., , Myerson   AS., , Doyle   PS. . Biocompatible alginate microgel particles as heteronucleants and encapsulating vehicles for hydrophilic and hydrophobic drugs. . Cryst Growth Des . 2014; ;14: : 2073– 2082 .
    [Google Scholar]
  83. [83]. Chan   AW., , Whitney   RA., , Neufeld   RJ. . Kinetic controlled synthesis of pH-responsive network alginate. . Biomacromolecules . 2008; ;9: : 2536– 2545 .
    [Google Scholar]
  84. [84]. Chu   H., , Wang   Y. . Therapeutic angiogenesis: Controlled delivery of angiogenic factors. . Ther Deliv . 2012; ;3: : 693– 714 .
    [Google Scholar]
  85. [85]. Silva   EA., , Mooney   DJ. . Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. . J Thromb Haemost . 2007; ;5: : 590– 598 .
    [Google Scholar]
  86. [86]. Ruvinov   E., , Leor   J., , Cohen   S. . The effects of controlled HGF delivery from an affinity-binding alginate biomaterial on angiogenesis and blood perfusion in a hindlimb ischemia model. . Biomaterials . 2010; ;31: : 4573– 4582 .
    [Google Scholar]
  87. [87]. Hao   X., , Silva   EA., , Månsson-Broberg   A., , Grinnemo   K-H., , Siddiqui   AJ., , Dellgren   G., , Wärdell   E., , Brodin   LA., , Mooney   DJ., , Sylvén   C. . Angiogenic effects of sequential release of VEGF-A165 and PDGF-BB with alginate hydrogels after myocardial infarction. . Cardiovasc Res . 2007; ;75: : 178– 185 .
    [Google Scholar]
  88. [88]. Subia B., , Kundu J., , Kundu SC. . Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications. . 2010 [http://www.intechopen.com/books/tissue-engineering/biomaterial-scaffold-fabrication-techniques-for-potential-tissue-engineering-applications]. Accessed 9 February 2016 .
  89. [89]. Harris   LD., , Kim   BS., , Mooney   DJ. . Open pore biodegradable matrices formed with gas foaming. . J Biomed Mater Res . 1998; ;42: : 396– 402 .
    [Google Scholar]
  90. [90]. Pavia   FC., , La Carrubba   V., , Piccarolo   S., , Brucato   V. . Polymeric scaffolds prepared via thermally induced phase separation: Tuning of structure and morphology. . J Biomed Mater Res A . 2008; ;86: : 459– 466 .
    [Google Scholar]
  91. [91]. Sohier   J., , Carubelli   I., , Sarathchandra   P., , Latif   N., , Chester   AH., , Yacoub   MH. . The potential of anisotropic matrices as substrate for heart valve engineering. . Biomaterials . 2014; ;35: : 1833– 1844 .
    [Google Scholar]
  92. [92]. Delaney   JT., , Liberski   AR., , Perelaer   J., , Schubert   US. . Reactive inkjet printing of calcium alginate hydrogel porogens—a new strategy to open-pore structured matrices with controlled geometry. . Soft Matter . 2010; ;6: : 866– 869 .
    [Google Scholar]
  93. [93]. Aibibu   D., , Hild   M., , Wöltje   M., , Cherif   C. . Textile cell-free scaffolds for in situ tissue engineering applications. . J Mater Sci Mater Med [Internet] . 2016; ;27: : 63-1:63-20 . [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723636/]. Accessed 9 February 2016 .
    [Google Scholar]
  94. [94]. Mikos   AG., , Temenoff   JS. . Formation of highly porous biodegradable scaffolds for tissue engineering. . Electron J Biotechnol . 2000; ;3: : 23– 24 .
    [Google Scholar]
  95. [95]. Peck   M., , Dusserre   N., , McAllister   TN., , L'Heureux   N. . Tissue engineering by self-assembly. . Mater Today . 2011; ;14: : 218– 224 .
    [Google Scholar]
  96. [96]. Amensag   S., , McFetridge   PS. . Tuning scaffold mechanics by laminating native extracellular matrix membranes and effects on early cellular remodeling. . J Biomed Mater Res A . 2014; ;102: : 1325– 1333 .
    [Google Scholar]
  97. [97]. Do   A-V., , Khorsand   B., , Geary   SM., , Salem   AK. . 3D printing of scaffolds for tissue regeneration applications. . Adv Healthc Mater . 2015; ;4: : 1742– 1762 .
    [Google Scholar]
  98. [98]. Leong   KF., , Cheah   CM., , Chua   CK. . Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. . Biomaterials . 2003; ;24: : 2363– 2378 .
    [Google Scholar]
  99. [99]. Hribar   KC., , Soman   P., , Warner   J., , Chung   P., , Chen   S. . Light-assisted direct-write of 3D functional biomaterials. . Lab Chip . 2014; ;14: : 268– 275 .
    [Google Scholar]
  100. [100]. Burks   AW. . The invention of the universal electronic computer—how the Electronic Computer Revolution began. . Future Gener Comput Syst . 2002; ;18: : 871– 892 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2016.3
Loading
/content/journals/10.5339/connect.2016.3
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Alginate , Heart Valve , Hydrogels , living threads , Three-dimensional printing and Tissue Engineering
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error