1887
Volume 2013, Issue 1
  • E-ISSN: 2223-506X

Abstract

This study aimed to synthesize some 2′, 3′, 4′-trichlorophenyl chalcones [()-1-(2, 3, 4-trichlorophenyl)-3-(substituted phenyl)-2-propen-1-ones] using solvent-free sulfated Titania catalyzed aldol condensation between 2, 3, 4-trichloroacetophenone and substituted benzaldehydes under microwave irradiation. To characterize these chalcones using analytical, physical and spectroscopic data and also to study their the spectral correlation and antimicrobial activities. Solvent free microwave assisted aldol condensation method was used for synthesizing substituted styryl 2′, 3′, 4′-trichlorophenyl ketones. They were characterized by UV, IR, NMR and mass spectroscopic data. The UV, IR, NMR spectral data were correlated with substituent constants, F and R parameters, using Hammett equation, to study the effect of substituents. The Bauer-Kirby method was used for the evaluation of antimicrobial activities of the synthesized chalcones. The yields of the synthesized chalcones were more than 90%. The spectral data of these ketones had been correlated, using single and multi-linear regression analysis. These gave a satisfactory degree of correlations with some parameters and a fair degree of correlations with some parameters. Few chalcones had excellent antimicrobial activities, whereas, others showed poor antimicrobial activities. Easy work-up and handling, non-hazardous and environmentally benign aldol condensation method had been adopted for synthesizing chalcones with better yields. Some of the Hammett spectral correlations were found satisfactory with the observed spectroscopic data. Halo, methoxy, methyl and nitro substituted compounds had shown excellent antimicrobial activities based on their zone of inhibitions.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.30
2014-02-01
2019-12-10
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.30.html?itemId=/content/journals/10.5339/connect.2013.30&mimeType=html&fmt=ahah

References

  1. Kostanecki SV, Tambor J. Ueber die sechs isomeren Monooxybenzalacetophenone (Monooxychalkone). Ber Dtsch Chem Ges. 1899; 32:2:19211926.
    [Google Scholar]
  2. Combes G, Vassort PH, Winternitz F. Structure de la rubranine, chalcone isolee de l'Aniba rosaeodora ducke. Tetrahedron Lett. 1976; 26:24:5981.
    [Google Scholar]
  3. Kohler EP, Chandwell HM. Benzalacetophenone (Chalcone). Org Syn Coll. 1922; 2::1.
    [Google Scholar]
  4. Kazauki K, Hitayama K, Yokomor S, Soki T. Isoprenyl Chalcones. Chemical Abstracts. 1976; 85::5913.
    [Google Scholar]
  5. Thirunarayanan G, Mayavel P, Thirumurthy K. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. Spectrochim Acta A Mol Biomol Spectrosc. 2012; 91::1822.
    [Google Scholar]
  6. Thirunarayanan G, Vanangamudi G. Synthesis of some 4-bromo-1-naphthyl chalcones using silica-sulfuric acid reagent under solvent free conditions. Arch Organ Chem. 2006; xii:5864.
    [Google Scholar]
  7. Salehi P, Dabiri M, Zolfigol MA, Fard MAB. Silica sulfuric acid as an efficient and reusable reagent for crossed-aldol condensation of ketones with aromatic aldehydes under solvent-free conditions. J Braz Chem Soc. 2004; 15:5:773776.
    [Google Scholar]
  8. Thirunarayanan G, Ananthakrishna Nadar P. Synthesis, Characterization and substituent effects in substituted styryl 4-chloro-1-naphthyl ketones. J Indian Chem Soc. 2006; 83:11:1107.
    [Google Scholar]
  9. Palleros DR. Solvent-free synthesis of chalcones. J Chem Educ. 2004; 81:9:1345.
    [Google Scholar]
  10. Basaif SA, Sobahi TR, Khalil AK, Hassan MA. Stereoselective Crossed-Aldol Condensation of Hetarylmethyl Ketones with Aromatic Aldehydes in Water/: Synthesis of (2E)-3-Aryl-1-hetarylprop-2-en-1-ones. B Kor Chem Soc. 2005; 26:11:16771681.
    [Google Scholar]
  11. Xu Q, Yang Z, Yin D, Zhang F. Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo. Catal Commun. 2008; 9:7:15791582.
    [Google Scholar]
  12. Kumar P, Kumar S, Husain K, Kumar A. An efficient synthesis of pyrazole chalcones under solvent free conditions at room temperature. Chin Chem Lett. 2011; 22::3740.
    [Google Scholar]
  13. Zhang Z, Dong Y-W, Wang G-W. Efficient and clean aldol condensation catalyzed by sodium carbonate in water. Chem Lett. 2003; 32:10:966967.
    [Google Scholar]
  14. Blackwell H. Hitting the SPOT: small-molecule macroarrays advance combinatorial synthesis. Curr Opin Chem Biol. 2006; 10:3:203212.
    [Google Scholar]
  15. Thirunarayanan G. Proceedings of the 46th Annual convention of Chemists and International conference on recent research trends in chemical sciences. 2009;. Number ORG OP5, C13.
  16. Johnson BFG, Lewis J, Stephenson GR, Vichi EJSJ. Preparation and reactions of triphenylphosphine and triphenylphosphite complexes of (benzylideneacetone) dicarbonyliron(0). J Chem Soc Dalton Trans. 1978;:369373.
    [Google Scholar]
  17. Fernandes NS, Carvalho Filho MAS, Mendes RA, Melios CB. Thermal studies on solid compounds of 4-chlorobenzylidenepyruvate of some alkali earth metals. J Therm Anal Calorim. 2004; 76:1:193202.
    [Google Scholar]
  18. Li JT, Yang WZ, Wang SX, Li SH, Li TS. Improved synthesis of chalcones under ultrasound irradiation. Ultrason Sonochem. 2002; 9:5:237239.
    [Google Scholar]
  19. Krishnakumar B, Velmurugan R, Swaminathan M. TiO2-SO42 −  as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation. Catal Commun. 2011; 12:5:375379.
    [Google Scholar]
  20. Rajput JK, Kaur G. Silicotungstic acid catalysed Claisen Schmidt condensation reaction: an efficient protocol for synthesis of 1,3-diaryl-2-propenones. Tetrahedron Lett. 2012; 53:6:646649.
    [Google Scholar]
  21. Arulkumaran R, Vijayakumar S, Sundararajan R, Sakthinathan SP, Kamalakkannan D, Suresh R, Ranganathan K, Vanangamudi G, Thirunarayanan G. Thionylchloride catalyzed aldol condensation: Synthesis, spectral correlation and antibacterial activities of some 3,5-dichloro-2-hydroxyphenyl chalcones. ILCPA. 2012; 4::1738.
    [Google Scholar]
  22. Arulkumaran R, Vijayakumar S, Sakthinathan SP, Kamalakkannan D, Ranganathan K, Suresh R, Sundararajan R, Vanangamudi G, Thirunarayanan G. Preheated fly-ash catalyzed aldol condensation: efficient synthesis and antimicrobial activities of some 3-thienyl chalcones. J Chil Chem Soc. 2013; 58:2:15531559.
    [Google Scholar]
  23. Janaki P, Sekar KG, Thirunarayanan G. SiO2-H3PO4 Catalyzed solvent free aldol condensation: Synthesis and spectral correlations of some antimicrobial potent aryl E 2-propen-1-ones. Org Chem Indian J. 2013; 9:2:68.
    [Google Scholar]
  24. Sathiyamoorthi K, Mala V, Sakthinathan SP, Kamalakkannan D, Suresh R, Vanangamudi G, Thirunarayanan G. Solvent- free synthesis, spectral correlations and antimicrobial activities of some aryl E 2-propen-1-ones. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 112::245256.
    [Google Scholar]
  25. Prasad RY, Kumar PP, Kumar RP, Rao SA. Synthesis and antimicrobial activity of some new chalcones of 2-acetyl pyridine. E J Chem. 2008; 5:1:144148.
    [Google Scholar]
  26. Onyilagha JC, Malhotra B, Elder M, French CJ, Towers GHN. Comparative studies of inhibitory activities of chalcones on tomato ringspot virus (ToRSV). Can J Plant Pathol. 1997; 19:2:133137.
    [Google Scholar]
  27. Jeu-won S, Liu CT, Tsao LT, Weng JR, Ko HH, Wang JP, Lin CN. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur J Med Chem. 2005; 40:1:103112.
    [Google Scholar]
  28. Mishra N, Arora P, Kumar B, Mishra LC, Bhattacharya A, Awasthi SK, Bhasin VK. Synthesis of novel substituted 1,3-diaryl propenone derivatives and their antimalarial activity in vitro. Eur J Med Chem. 2008; 43:7:15301535.
    [Google Scholar]
  29. Nam NH, Kim Y, You YJ, Hong DH, Kim HM, Ahn BZ. Cytotoxic 2′,5′-dihydroxychalcones with unexpected antiangiogenic activity. Eur J Med Chem. 2003; 38:2:179187.
    [Google Scholar]
  30. Arulkumaran R, Sundararajan R, Vanangamudi G, Subramanian M, Ravi K, Sathiyendiran V, Srinivasan S, Thirunarayanan G. Infrared spectral linearity of some Anti-plasmodial potent chalcones. Iup J Chem. 2013; 3:1:8298.
    [Google Scholar]
  31. Thirunarayanan G, Vanangamudi G. Synthesis, spectral studies, antimicrobial and insect antifeedant activities of some substituted styryl 4′-fluorophenyl ketones. Arabian J Chem. 2011. DOI http://dx.doi.org/10.1016/j.arabjc.2010.10.034
    [Google Scholar]
  32. Thirunarayanan G, Ananthakrishna Nadar P. Synthesis and Substituent Effects in Substituted Styryl 4-Methoxy-1-Naphthyl Ketones. J Kor Chem Soc. 2006; 50:3:183190.
    [Google Scholar]
  33. Thirunarayanan G, Vanangamudi G, Subramanian M, Umadevi U, Sakthinathan SP, Sundararajan R. Synthesis, spectral correlation and antimicrobial activities of some substituted styryl 5-methyl-2-furyl ketones. Elixir Org Chem. 2011; 39::46434653.
    [Google Scholar]
  34. Arulkumaran R, Sundararajan R, Vijayakumar S, Sakthinathan SP, Suresh R, Kamalakkannan D, Ranganathan K, Vanangamudi G, Thirunarayanan G. Solvent free synthesis, spectral correlation and antimicrobial activities of some 2E 4′-nitrochalcones. J Saudi Chem Soc. 2012. DOI: http://dx.doi.org/10.1016/j.jscs.2012.09.006
    [Google Scholar]
  35. Mala V, Sathiyamoorthi K, Sakthinathan S, Kamalakkannan D, Suresh R, Vanangamudi G, Thirunarayanan G. Solvent-free synthesis, spectral correlations and antimicrobial activities of some 3,4-dimethoxy chalcones. QScience Connect. 2013; 2013:7.
    [Google Scholar]
  36. Vanangamudi G, Subramanian M, Thirunarayanan G. Synthesis, spectral linearity, antimicrobial, antioxidant and insect antifeedant activities of some 2,5-dimethyl-3-thienyl chalcones. Arabian J Chem. 2013. DOI http://dx.doi.org/10.1016/j.arabjc.2013.03.006
    [Google Scholar]
  37. Subramanian M, Vanangamudi G, Thirunarayanan G. Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2,5-dimethyl-3-furyl chalcones. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 110::116123.
    [Google Scholar]
  38. Bauer AW, Kirby WMM, Sherris JC, Truck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966; 45::493.
    [Google Scholar]
  39. Hoong-Kun F, Yeap CS, Prasad JD, Nayak SP, Laxmana K. (E)-3-(4-Chlorophenyl)-1-(2,3,4-trichlorophenyl)prop-2-en-1-one. Acta Crystallogr. 2011; E67::o241.
    [Google Scholar]
  40. Ranganathan K, Suresh R, Kamalakkannan D, Arulkumaran R, Sundararajan R, Sakthinathan SP, Vijayakumar S, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G. Electrochemical reduction potential correlation of some insect antifeedant potent 2-phenothiazinyl chalcones. ILCPA. 2012; 4::6675.
    [Google Scholar]
  41. Sathiyamoorthi K, Mala V, Suresh R, Sakthinathan SP, Kamalakkannan D, Ranganathan K, Arulkumaran R, Sundararajan R, Vijayakumar S, Vanangamudi G, Thirunarayanan G. Synthesis, spectral correlations and antimicrobial activities of some 2-hydroxyphenyl-styrylketone. ILCPA. 2013; 7:2:102119.
    [Google Scholar]
  42. Sakthinathan SP, Suresh R, Mala V, Sathiyamoorthi K, Kamalakkannan D, Ranganathan K, Arulkumaran R, Vijayakumar S, Sundararajan R, Vanangamudi G, Thirunarayanan G. Spectral correlations and antimicrobial activities of some (E)-N-Benzylidenepyridin-2-amines. ILCPA. 2013; 6::7790.
    [Google Scholar]
  43. Swain CG, Lupton EC Jr.. Field and resonance components of substituent effects. J Am Chem Soc. 1968; 90::43284337.
    [Google Scholar]
  44. Hayes WP, Timmons CJ. The C–O and C–C fundamental and overtone stretching bands and the electronic absorption bands of some αβ-unsaturated ketones. Spectrochim Acta A Mol Biomol Spectrosc. 1968; 24:4:323334.
    [Google Scholar]
  45. Shorter J. Correlation analysis in organic Chemistry: An introduction to linear free energy relationships. London: Clarendon Press 1973.
    [Google Scholar]
  46. Calliste CA, Le Bail JC, Trouilas P, Pouget C, Habrioux G, Chulia AJ, Duroux JL. Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities. Anticancer Res. 2001; 21:6A:39493956.
    [Google Scholar]
  47. Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem. 2002; 10:8:2795.
    [Google Scholar]
  48. Bombardelli E, Valenti P. PCT International Applications. Chalcones having antiproliferative activity, WO 1998058913 A1;1998;18-22.
  49. Miranda CL, Stevens JF, Ivanov V, McCall M, Frei B, Deinzer ML, Buhler DR. Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro. J Agri Food Chem. 2000; 48:9:38763884.
    [Google Scholar]
  50. Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Paya M. Synthesis and Pharmacological Evaluation of 2′-Hydroxychalcones and Flavones as Inhibitors of Inflammatory Mediators Generation. J Med Chem. 1995; 38:14:27942797.
    [Google Scholar]
  51. Zhao LM, Jin HS, Sun LP, Piao HR, Quan ZS. Synthesis and evaluation of antiplatelet activity of trihydroxychalcone derivatives. Bioorg Med Chem Lett. 2005; 15:22:50275029.
    [Google Scholar]
  52. Thirunarayanan G, Surya S, Srinivasan S, Vanangamudi G, Sathiyendiran V. Synthesis and insect antifeedant activities of some substituted styryl 3,4-dichlorophenyl ketones. Spectrochim Acta. 2010; 75A:1:152156.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.30
Loading
/content/journals/10.5339/connect.2013.30
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error