1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

Copper(II) complexes with novel chelator-type nucleosides: histidine modified 2′-deoxyriboadenosine (N-[(9-β-D-2′-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) and histamine modified 2′-deoxyriboadenosine (N-[(9-beta-D-2′-deoxyribofuranosylpurin-6-yl)-carbamoyl]histamine) were studied by potentiometric and spectroscopic (UV–VIS, CD, EPR) techniques. A histidine or histamine residue was inserted in the purine part of a nucleoside. The ligands can act as bidentate or tridentate, depending on the pH range. The Cu(II) ions bind specifically to the modified deoxynucleosides forming very stable chelates. In acidic pH, a very stable dimeric complex Cu2L2 predominates, with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from a purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL2, Cu2L2H-1 and Cu2L2H-2 species. The CuL2H-1 and CuL2H-2 complexes, with three or four nitrogens in Cu(II) coordination sphere, have been detected in alkaline medium. The cleavage of double stranded pEGFP-C1 in 5 mM Tris–HCl/5 mM NaCl buffer (pH, 7.5) by ligands and Cu(II) complexes, in the absence of any reducing agent has been studied by gel electrophoresis. The ligands and their copper complexes have introduced single-strand nicks into pEGFP-C1 plasmid DNA at micromolar concentrations, converting the supercoiled into open circular forms. The chelates have been found to be more active as DNA cleavers than the free ligands.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.38
2013-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.38.html?itemId=/content/journals/10.5339/connect.2013.38&mimeType=html&fmt=ahah

References

  1. Sreedhara A, Freed JD, Cowan JA. Efficient inorganic deoxyribonucleases. Greater than 50-million-fold rate enhancement in enzyme-like DNA cleavage. J Am Chem Soc. 2000; 122:37:88148824.
    [Google Scholar]
  2. Cowan JA. Chemical nucleases. Curr Opin Chem Biol. 2001; 5:6:634642.
    [Google Scholar]
  3. Jin Y, Cowan JA. DNA cleavage by Copper–ATCUN complexes. Factors influencing cleavage mechanism and linearization of dsDNA. J Am Chem Soc. 2005; 127:23:84088415.
    [Google Scholar]
  4. Mancin F, Scrimin P, Tecilla P, Tonellato U. Artificial metallonucleases. Chem Commun. 2005; 20:2540.
    [Google Scholar]
  5. Pitié M, Burrows CJ, Meunier B. Mechanisms of DNA cleavage by copper complexes of 3-Clip-Phen and of its conjugate with a distamycin analogue. Nucleic Acids Res. 2000; 28:24:48564864.
    [Google Scholar]
  6. Branum ME, Tipton AK, Zhu S, Que L. Double-strand hydrolysis of plasmid DNA by dicerium complexes at 37°C. J Am Chem Soc. 2001; 123:9:18981904.
    [Google Scholar]
  7. Boseggia E, Gatos M, Lucatello L, Mancin F, Moro S, Palumbo M, Sissi C, Tecilla P, Tonellato U, Zagotto G. Toward efficient Zn(II)-based artificial nucleases. J Am Chem Soc. 2004; 126:14:45434549.
    [Google Scholar]
  8. González-Álvarez M, Alzuet G, Borrás J, Macías B, Castiñeiras A. Oxidative cleavage of DNA by a new ferromagnetic linear trinuclear copper(II) complex in the presence of H2O2/sodium ascorbate. Inorg Chem. 2003; 42:9:29922998.
    [Google Scholar]
  9. Tu C, Shao Y, Gan N, Xu Q, Guo Z. Oxidative DNA strand scission induced by a trinuclear copper(II) complex. Inorg Chem. 2004; 43:15:47614766.
    [Google Scholar]
  10. Bales BC. Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. Nucleic Acids Res. 2005; 33:16:53715379.
    [Google Scholar]
  11. Melvin MS, Tomlinson JT, Saluta GR, Kucera GL, Lindquist N, Manderville RA. Double-strand DNA cleavage by copper prodigiosin. J Am Chem Soc. 2000; 122:26:63336334.
    [Google Scholar]
  12. Roelfes G, Branum ME, Wang L, Que L, Feringa BL. Efficient DNA cleavage with an iron complex without added reductant. J Am Chem Soc. 2000; 122:46:1151711518.
    [Google Scholar]
  13. Sissi C, Mancin F, Gatos M, Palumbo M, Tecilla P, Tonellato U. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex. Inorg Chem. 2005; 44:7:23102317.
    [Google Scholar]
  14. Maheswari PU, Roy S, Dulk HD, Barends S, Wezel GV, Kozlevčar B, Gamez P, Reedijk J. The square-planar cytotoxic [CuII(pyrimol)Cl] complex acts as an efficient DNA cleaver without reductant. J Am Chem Soc. 2006; 128:3:710.
    [Google Scholar]
  15. Li K, Zhou L-H, Zhang J, Chen S-Y, Zhang Z-W, Zhang J-J, Lin H-H, Yu X-Q. “Self-activating” chemical nuclease: ferrocenyl cyclen Cu(II) complexes act as efficient DNA cleavage reagents in the absence of reductant. Eur J Med Chem. 2009; 44:4:17681772.
    [Google Scholar]
  16. Zhou D-M, Taira K. The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA. Chem Rev. 1998; 98:3:9911026.
    [Google Scholar]
  17. Cowan JA. Metal activation of enzymes in nucleic acid biochemistry. Chem Rev. 1998; 98:3:10671088.
    [Google Scholar]
  18. Kuimelis RG, McLaughlin LW. Mechanisms of ribozyme-mediated RNA cleavage. Chem Rev. 1998; 98:3:10271044.
    [Google Scholar]
  19. Borah S, Melvin MS, Lindquist N, Manderville RA. Copper-mediated nuclease activity of a tambjamine alkaloid. J Am Chem Soc. 1998; 120:19:45574562.
    [Google Scholar]
  20. Baudoin O, Teulade-Fichou M-P, Vigneron J-P, Lehn J-M. Efficient copper (II)-mediated nuclease activity of ortho-quinacridines. Chem Commun. 1998; 21:23492350.
    [Google Scholar]
  21. Pitié M, Sudres B, Meunier B. Dramatic increase of the DNA cleavage activity of Cu(Clip-phen) by fixing the bridging linker on the C3 position of the phenanthroline units. Chem Commun. 1998; 23:25972598.
    [Google Scholar]
  22. Sreedhara A, Cowan JA. Efficient catalytic cleavage of DNA mediated by metalloaminoglycosides. Chem Commun. 1998; 16:17371738.
    [Google Scholar]
  23. He J, Hu P, Wang Y-J, Tong M-L, Sun H, Mao Z-W, Ji L-N. Double-strand DNA cleavage by copper complexes of 2,2′-dipyridyl with guanidinium/ammonium pendants. Dalton Trans. 2008; 24:32073214.
    [Google Scholar]
  24. Ren R, Yang P, Zheng W, Hua Z. A simple copper(II)-L-histidine system for efficient hydrolytic cleavage of DNA. Inorg Chem. 2000; 39:24:54545463.
    [Google Scholar]
  25. Ren R, Yang P, Han GY. DNA cleavage by copper (II) complexes without added coreactants. Chin Chem Lett. 1999; 10:5:383386.
    [Google Scholar]
  26. Bando T, Iida H, Tao Z-F, Narita A, Fukuda N, Yamori T, Sugiyama H. Sequence specificity, reactivity, and antitumor activity of DNA-alkylating pyrrole-imidazole diamides. Chem Biol. 2003; 10:8:751758.
    [Google Scholar]
  27. Łodyga-Chruścińska E, Sochacka E, Smuga D, Chruściński L, Micera G, Sanna D, Turek M, Gęsiorkiewicz M. Histamine modified 2′-deoxyriboadenosine – potential copper binding site in DNAzymes. J Inorg Biochem. 2010; 104:5:570575.
    [Google Scholar]
  28. Łodyga-Chruścińska E, Ołdziej S, Sochacka E, Korzycka K, Chruściński L, Micera G, Sanna D, Turek M, Pawlak J. Impact of histidine residue on chelating ability of 2′-deoxyriboadenosine. J Inorg Biochem. 2011; 105:9:12121219.
    [Google Scholar]
  29. Irving HM, Miles MG, Pettit LD. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal Chim Acta. 1967; 38::475488.
    [Google Scholar]
  30. Gans P, Sabatini A, Vacca A. SUPERQUAD: an improved general program for computation of formation constants from potentiometric data. J Chem Soc Dalton Trans. 1985; 6:1195.
    [Google Scholar]
  31. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev. 1999; 184:1:311318.
    [Google Scholar]
  32. Kazakov SA In: Hecht S, ed. Oxford: Oxford University Press 1996;:244287.
  33. Martin RB. Nucleoside sites for transition metal ion binding. Acc Chem Res. 1985; 18:2:3238.
    [Google Scholar]
  34. Seo JS, Sung N-D, Hynes RC, Chin J. Structure and reactivity of a dinuclear cobalt(III) complex with a bridging phosphate monoester. Inorg Chem. 1996; 35:26:74727473.
    [Google Scholar]
  35. Aldrich-Wright J, Brodie C, Glazer EC, Luedtke NW, Elson-Schwab L, Tor Y. Symmetrical dinuclear complexes with high DNA affinity based on [Ru(dpq)2(phen)]2+Electronic supplementary information (ESI) available: method for determining equilibrium binding constants and representative spectroscopic data for each experiment. Chem Commun. 2004; 8:1018.
    [Google Scholar]
  36. Williams NH, Takasaki B, Wall M, Chin J. Structure and nuclease activity of simple dinuclear metal complexes: quantitative dissection of the role of metal ions. Acc Chem Res. 1999; 32:6:485493.
    [Google Scholar]
  37. Chin J. Artificial dinuclear phosphoesterases. Curr Opin Chem Biol. 1997; 1:4:514521.
    [Google Scholar]
  38. Trawick BN, Daniher AT, Bashkin JK. Inorganic mimics of ribonucleases and ribozymes: from random cleavage to sequence-specific chemistry to catalytic antisense drugs. Chem Rev. 1998; 98:3:939960.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.38
Loading
/content/journals/10.5339/connect.2013.38
Loading

Data & Media loading...

Supplements

Supplementary File 1

  • Article Type: Research Article
Keyword(s): copper complexesDNA cleavagehistaminehistidine and modified deoxyadenosine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error