1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

Minerals have a profound impact on reproduction. The relations between estradiol-17β (E) and blood mineral levels have been studied mainly in human and rats, but not in quail. Therefore, the aim of this study was to test the effect of E on serum mineral concentrations in Japanese quail (). The study was conducted at the Seljuk University animal farm thirteen week old female Japanese quails ( = 33) were housed in cages (25 × 35 × 48 cm) under a 16 hours light: 8 hours dark cycle. During the course of the study, birds were fed with a diet supplying 20% crude protein, 2901 kcal/kg metabolic energy, 2.5% calcium (Ca), 0.35% phosphorus (P), 1.02% lysine, 1.02% methionine and cysteine mixture. After a 7-day adaptation period, the birds were randomly assigned to 3 groups, one control ( = 10) and two others as test groups ( = 11 and  = 12). Birds in test groups were subcutaneously injected with 0.1 or 0.2 mg E. Blood samples were collected from the jugular vein and serum mineral concentrations were measured by HNO digestion method. Injection of 0.2 mg E resulted with a significant reduction in serum potassium concentration as compared to control group. Injection of 0.2 mg E caused a significant reduction in serum iron concentration as compared to 0.1 mg E injected group. Injection of 0.1 mg E caused a significant increase in serum chromium concentration over the control. Serum boron concentration was significantly high after the injection of 0.1 or 0.2 mg E over the control group. Effect of E on serum mineral concentration depends on injection dose. An injection of 0.1 or 0.2 mg E significantly increased serum boron concentration, which is an indication for the effect of E on bone mineralization and feed conversion ratio. Thus, administration of boron or E may protect postmenopausal women against osteoporosis and estradiol can be employed for the treatment of osteoporosis. Injection of 0.1 mg E caused a significant increase in serum chromium concentration, which indicates the function of E on body growth and reproductive performance. Injection of 0.2 mg E caused significant reduction in serum potassium (K) concentration, while there was a slight increase in serum sodium (Na) concentration. This indicates the involvement of E in rennin-angiotensin-aldosterone system.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.37
2013-11-01
2024-11-07
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.37.html?itemId=/content/journals/10.5339/connect.2013.37&mimeType=html&fmt=ahah

References

  1. Lien R, Cain J, Forrest D. The influence of exogenous estradiol on bobwhite quail (Colinus virginianus) reproductive systems. Comp Biochem Physiol A Comp Physiol. 1985; 80:3:433436.
    [Google Scholar]
  2. Laugier C, Courion C, Pageaux JF, Fanidi A, Dumas MY, Sandoz D, Nemoz G, Prigent AF, Pacheco H. Effect of estrogen on adenosine 3′5′,cyclic monophosphate in quail oviduct: possible involvement in estradiol-activated growth. Endocrinology. 1988; 122:1:158164.
    [Google Scholar]
  3. Balthazart J, Cornil CA, Charlier TD, Taziaux M, Ball GF. Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail. J Exp Zool A Ecol Genet Physiol. 2009; 311:5:323345.
    [Google Scholar]
  4. Simoni RD, Hill RL, Vaughan M. The discovery of estrone, estriol, and estradiol and the biochemical study of reproduction. The work of Edward Adelbert Doisy, JBC classics. J Biol Chem. 2002; 277::e17.
    [Google Scholar]
  5. Bruch HR, Wolf L, Budde R, Romalo G, Schweikert HU. Androstenedione metabolism in cultured human osteoblast-like cells. J Clin Endocrinol Metab. 1992; 75:1:101105.
    [Google Scholar]
  6. Bayard F, Clamens S, Delsol G, Blaes N, Maret A, Faye JC. Oestrogen synthesis, oestrogen metabolism and functional oestrogen receptors in bovine aortic endothelial cells. Ciba Found Symp. 1995; 191::122132; discussion 132-8.
    [Google Scholar]
  7. Sasano H, Murakami H, Shizawa S, Satomi S, Nagura H, Harada N. Aromatase and sex steroid receptors in human vena cava. Endocr J. 1999; 46:2:233242.
    [Google Scholar]
  8. Pelletier G, Labrie C, Labrie F. Localization of oestrogen receptor alpha, oestrogen receptor beta and androgen receptors in the rat reproductive organs. J Endocrinol. 2000; 165:2:359370.
    [Google Scholar]
  9. Okada A, Ohta Y, Inoue S, Hiroi H, Muramatsu M, Iguchi T. Expression of estrogen, progesterone and androgen receptors in the oviduct of developing, cycling and pre-implantation rats. J Mol Endocrinol. 2003; 30:3:301315.
    [Google Scholar]
  10. Wathes DC, Hamon M. Localization of oestradiol, progesterone and oxytocin receptors in the uterus during the oestrous cycle and early pregnancy of the ewe. J Endocrinol. 1993; 138:3:479492.
    [Google Scholar]
  11. Rodríguez-Piñón M, Meikle A, Tasende C, Sahlin L, Garófalo EG. Differential estradiol effects on estrogen and progesterone receptors expression in the oviduct and cervix of immature ewes. Domest Anim Endocrinol. 2005; 28:4:442450.
    [Google Scholar]
  12. Khan-Dawood FS, Dawood MY. Estrogen and progesterone receptor and hormone levels in human myometrium and placenta in term pregnancy. Am J Obstet Gynecol. 1984; 150:5 pt 1:501505.
    [Google Scholar]
  13. Haluska GJ, West NB, Novy MJ, Brenner RM. Uterine estrogen receptors are increased by RU486 in late pregnant rhesus macaques but not after spontaneous labor. J Clin Endocrinol Metab. 1990; 70:1:181186.
    [Google Scholar]
  14. Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab. 2000; 85:12:48354840.
    [Google Scholar]
  15. Turner RT, Eliel LP. Nuclear estrogen receptor in the reproductive tract of laying Japanese quail. Gen Comp Endocrinol. 1978; 34:2:141148.
    [Google Scholar]
  16. Ohashi T, Kusuhara S, Ishida K. Immunoelectron microscopic demonstration of estrogen receptors in osteogenic cells of Japanese quail. Histochemistry. 1991; 96:1:4144.
    [Google Scholar]
  17. Mahendra G, Gupta S, Kanungo MS. Effect of 17beta estradiol and progesterone on the conformation of the chromatin of the liver of female Japanese quail during aging. Arch Gerontol Geriatr. 1999; 28:2:149158.
    [Google Scholar]
  18. Wilde D. Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim Reprod Sci. 2006; 96:3–4:240249.
    [Google Scholar]
  19. Hidiroglou M. Trace element deficiencies and fertility in ruminants: a review. J Dairy Sci. 1979; 62:8:11951206.
    [Google Scholar]
  20. Phillippo M, Humphries WR, Atkinson T, Henderson GD, Garthwaite PH. The effect of dietary molybdenum and iron on copper status, puberty, fertility and oestrous cycles in cattle. J Agr Sci. 1987; 109::321336.
    [Google Scholar]
  21. Corah LR, Ives S. The effects of essential trace minerals on reproduction in beef cattle. Vet Clin North Am Food Anim Pract. 1991; 7:1:4157.
    [Google Scholar]
  22. Maas J. Relationship between nutrition and reproduction in beef cattle. Vet Clin North Am Food Anim Pract. 1987; 3:3:633646.
    [Google Scholar]
  23. Dufty JH, Bingley JB, Cove LY. The plasma zinc concentration of nonpregnant, pregnant and parturient Hereford cattle. Aust Vet J. 1977; 53:11:519522.
    [Google Scholar]
  24. Brown MA, Casillas ER. Manganese and manganese-ATP interactions with bovine sperm adenylate cyclase. Arch Biochem Biophys. 1986; 244:2:719726.
    [Google Scholar]
  25. Yokus B, Cakir DU, Kurt D. Effects of seasonal and physiological variations on the serum major and trace element levels in sheep. Biol Trace Elem Res. 2004; 101:3:241255.
    [Google Scholar]
  26. Cameron IL, Pool TB, Smith NKR. Intracellular concentration of potassium and other elements in vaginal epithelial cells stimulated by estradiol administration. J Cell Physiol. 1980; 104:1:121125.
    [Google Scholar]
  27. Gaumet N, Seibel MJ, Coxam V, Davicco MJ, Lebecque P, Barlet JP. Influence of ovariectomy and estradiol treatment on calcium homeostasis during aging in rats. Arch Physiol Biochem. 1997; 105:5:435444.
    [Google Scholar]
  28. Laube M, Küppers E, Thome UH. Modulation of sodium transport in alveolar epithelial cells by estradiol and progesterone. Pediatr Res. 2011; 69:3:200205.
    [Google Scholar]
  29. Ulas M, Cay M. Effects of 17β-estradiol and Vitamin E treatments on blood trace element and antioxidant enzyme levels in ovariectomized rats. Biol Trace Elem Res. 2011; 139:3:347355.
    [Google Scholar]
  30. Johnson JA, Davis JO, Brown PR, Wheeler PD, Witty RT. Effects of estradiol on sodium and potassium balances in adrenalectomized dogs. Am J Physiol. 1972; 223:1:194197.
    [Google Scholar]
  31. Johnson JA, Davis JO. The effect of estrogens on renal sodium excretion in the dog. Perspect Nephrol Hypertens. 1976; 5::239248.
    [Google Scholar]
  32. Chilvers D, Jones M, Selby P, Dawson J, Hodgkinson A. Effects of oral ethinyl oestradiol and norethisterone on plasma copper and zinc complexes in post-menopausal women. Horm Metab Res. 1985; 17:10:532535.
    [Google Scholar]
  33. Mehta SW, Eikum R. Effect of estrogen on serum and tissue levels of copper and zinc. Adv Exp Med Biol. 1990; 258::155162.
    [Google Scholar]
  34. Packer E, Holloway L, Newhall K, Kanwar G, Butterfield G, Marcus R. Effects of estrogen on daylong circulating calcium, phosphorus, 1,25-dihydroxyvitamin D, and parathyroid hormone in postmenopausal women. J Bone Miner Res. 1990; 5:8:877884.
    [Google Scholar]
  35. Herzberg M, Lusky A, Blonder J, Frenkel Y. The effect of estrogen replacement therapy on zinc in serum and urine. Obstet Gynecol. 1996; 87:6:10351040.
    [Google Scholar]
  36. Hamano T, Fujii N, Ito T, Imai E, Mikami S, Katayama M, Obi Y. Low dose estrogen replacement therapy (ERT) for postmenopausal hemodialysis (HD) patients. Clin Calcium. 2005; 15:Suppl 1:161166; discussion 166.
    [Google Scholar]
  37. Meng J, Ohlsson C, Laughlin GA, Chonchol M, Wassel CL, Ljunggren O, Karlsson MK, Mellstrom D, Orwoll ES, Barrett-Connor E, Ix JH, Osteoporotic Fractures in Men (MrOs) Study Group . Associations of estradiol and testosterone with serum phosphorus in older men: the Osteoporotic Fractures in Men study. Kidney Int. 2010; 78:4:415422.
    [Google Scholar]
  38. Planas J. The serum ferroxidase activity and the iron mobilization by estrogens. Rev Esp Fisiol. 1973; 29:4:293299.
    [Google Scholar]
  39. Klandorf H, Blauwiekel R, Qin X, Russell RW. Characterization of a sustained-release estrogen implant on oviduct development and plasma Ca concentrations in broiler breeder chicks: modulation by feed restriction and thyroid state. Gen Comp Endocrinol. 1992; 86:3:469482.
    [Google Scholar]
  40. Sell JL, Hajj R, Cox A, Guenter W. Effect of magnesium deficiency in the hen on egg production and hatchability of eggs. Br Poult Sci. 1967; 8:1:5563.
    [Google Scholar]
  41. Waldroup PW, Simpson CF, Damron BL, Harms RH. The effectiveness of plant and inorganic phosphorus in supporting egg production in hens and hatchability and bone development in chick embryos. Poult Sci. 1967; 46:3:659664.
    [Google Scholar]
  42. Rossi AF, Miles RD, Bootwalla SM, Wilson HR, Eldred AR. The effect of feeding two sources of boron on broiler breeder performance. Poult Sci. 1993; 72:10:19311934.
    [Google Scholar]
  43. Yeh JK, Chen M-M, Aloia JF. Effects of estrogen and growth hormone on skeleton in the ovariectomized rat with hypophysectomy. Am J Physiol. 1997; 273:4 Pt 1:E734E742.
    [Google Scholar]
  44. Ohmori S, Kanda K, Kawano S, Kambe F, Seo H. Changes in calcium, PTH and 1,25 (OH)2 vitamin D3 during tail-suspension in ovariectomized rats: effects of estrogen administration. Environ Med. 2000; 44:2:7578.
    [Google Scholar]
  45. Adkins EK, Adler NT. Hormonal control of behavior in the Japanese quail. J Comp Physiol Psychol. 1972; 81:1:2736.
    [Google Scholar]
  46. Baldini JT, Zarrow MX. Estrogen and serum calcium levels in the Bobwhite quail. Poult Sci. 1952; 31:5:800804.
    [Google Scholar]
  47. Grunder AA, Guyer RB, Buss EG, Clagett CO. Effect of estradiol on calcium and calcium binding in serum of thick and then-shell lines of chickens. Poult Sci. 1980; 59:12:27762781.
    [Google Scholar]
  48. Takahashi K, Jensen LS. Liver response to diet and estrogen in white Leghorn and Rhode Island Red chickens. Poult Sci. 1985; 64:5:955962.
    [Google Scholar]
  49. de Ligniéres B, Silberstein S. Pharmacodynamics of oestrogens and progestogens. Cephalalgia. 2000; 20:3:200207.
    [Google Scholar]
  50. Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev. 2002; 82:3:735767.
    [Google Scholar]
  51. Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B. Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol. 2000; 279::F252F258.
    [Google Scholar]
  52. Bravo EL. Regulation of aldosterone secretion: current concepts and newer aspects. Adv Nephrol Necker Hosp. 1977; 7::105120.
    [Google Scholar]
  53. Runyan AL, Chhokar VS, Sun Y, Bhattacharya SK, Runyan JW, Weber KT. Bone loss in rats with aldosteronism. Am J Med Sci. 2005; 330:1:17.
    [Google Scholar]
  54. Fischer M, Baessler A, Schunkert H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc Res. 2002; 53:3:672677.
    [Google Scholar]
  55. Brunswig-Spickenheier B, Mukhopadhyay AK. Characterization of angiotensin -II receptor subtype on bovine thecal cells and its regulation by luteinizing hormone. Endocrinology. 1992; 131:3:14451452.
    [Google Scholar]
  56. Hayashi K, Miyamoto A, Berisha B, Kosmann MR, Okuda K, Schams D. Regulation of angiotensin II production and angiotensin receptors in microvascular endothelial cells from bovine corpus luteum. Biol Reprod. 2000; 62:1:162167.
    [Google Scholar]
  57. Koeppen BM, Stanton BA. Renal Physiology. St. Louis, Mo: Mosby Year Book 1992.
    [Google Scholar]
  58. Zheng W, Shi M, You S-E, Ji H, Roesch DM. Estrogens contribute to a sex difference in plasma potassium concentration: A mechanism for regulation of adrenal angiotensin receptors. Gend Med. 2006; 3:1:4353.
    [Google Scholar]
  59. Bergwitz C, Jüppner H. Regulation of Phosphate Homeostasis by PTH, Vitamin D, and FGF23. Annu Rev Med. 2010; 61::91104.
    [Google Scholar]
  60. Hidiroglou M, Williams CJ, Hackett AJ. Plasma levels of copper, iron and zinc during the estrous cycle of the ewe. Int J Vitam Nutr Res. 1982; 52:1:7579.
    [Google Scholar]
  61. Small JA, Charmley E, Rodd AV, Fredeen AH. Serum mineral concentrations in relation to estrus and conception in beef heifers and cows fed conserved forage. Can J Anim Sci. 1997; 77:1:5562.
    [Google Scholar]
  62. Williams TD. Parental and first generation effects of exogenous 17β-estradiol on reproductive performance of female zebra finches (Taeniopygia guttata). Horm Behav. 1999; 35::135143.
    [Google Scholar]
  63. Frezza EE, Gerunda GE, Farinati F, DeMaria N, Galligioni A, Plebani F, Giacomin A, Van Thiel DH. CCL4-induced liver cirrhosis and hepatocellular carcinoma in rats: relationship to plasma zinc, copper and estradiol levels. Hepatogastroenterology. 1994; 41:4:367369.
    [Google Scholar]
  64. Miller JK, Ramsey N, Madsen FC. The trace elements. In: Church DC, ed. The Ruminant Animal-Digestive Physiology and Nutrition. Englewood Cliffs, NJ: Prentice Hall 1988;:342401.
    [Google Scholar]
  65. Seaborn CD, Yang SP. Effect of molybdenum supplementation on N-nitroso-N-methylurea-induced mammary carcinogenesis and molybdenum excretion in rats. Biol Trace Elem Res. 1993; 39:2-3:245256.
    [Google Scholar]
  66. Roussel A-M, Bureau I, Favier M, Polansky MM, Bryden NA, Anderson RA. Beneficial effects of hormonal replacement therapy on chromium status and glucose and lipid metabolism in postmenopausal women. Maturitas. 2002; 42:1:6369.
    [Google Scholar]
  67. Hunt CD. Dietary boron modified the effects of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Trace Elem Res. 1989; 22:2:201220.
    [Google Scholar]
  68. Rossi AF, Miles RD, Damron BL, Flunker LK. Effects of dietary boron supplementation on broilers. Poult Sci. 1993; 72:11:21242130.
    [Google Scholar]
  69. Qin X, Klandorf H. Effect of dietary boron supplementation on egg production, shell quality, and calcium metabolism in aged broiler breeder hens. Poult Sci. 1991; 70:10:21312138.
    [Google Scholar]
  70. Elliot MA, Edwards HM Jr. Studies to determine whether an interaction exists among boron, calcium, and cholecalciferol on the skeletal development of broiler chickens. Poult Sci. 1992; 71:4:677690.
    [Google Scholar]
  71. Wilson JH, Ruszler PL. Effects of boron on growing pullets. Biol Trace Elem Res. 1997; 56:3:287294.
    [Google Scholar]
  72. Kurtoĝlu V, Kurtoĝlu F, Coşkun B. Effects of boron supplementation of adequate and inadequate vitamin D3-containing diet on performance and serum biochemical characters of broiler chickens. Res Vet Sci. 2001; 71:3:183187.
    [Google Scholar]
  73. Nielsen FH, Hunt CD, Mullen LM, Hunt JR. Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J. 1987; 1:5:394397.
    [Google Scholar]
/content/journals/10.5339/connect.2013.37
Loading
/content/journals/10.5339/connect.2013.37
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): aldosteronestradiolmineralsquail and serum
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error