1887
Volume 2013, Issue 1
  • E-ISSN: 2223-506X

Abstract

The present work investigates forced convective heat transfer characteristics of alumina-water nanofluids in a turbulent flow regime. Nanofluids are dilute colloidal suspensions with nano-sized particles ( < 100 nm) dispersed in a basefluid. The thermal conductivity values are measured by a steady state method, using a guarded hot plate (GHP) apparatus customized for liquids. The forced convective heat transfer characteristics are evaluated with the help of a test loop maintained in a constant heat flux condition. Controlled experiments under a turbulent flow regime are carried out using four particle concentrations (0.5vol%, 1vol%, 2vol% and 4vol %). The experimental results show that, the thermal conductivity of nanofluids increases with an increase in particle concentration and closely follow effective medium theories. However, the enhancement of heat transfer coefficients in the turbulent regime is observed to be within the measurement uncertainty.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.39
2014-01-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.39.html?itemId=/content/journals/10.5339/connect.2013.39&mimeType=html&fmt=ahah

References

  1. Masuda J, Ebata A, Teramae K, Hishinuma N. Alternation of thermal conductivity and viscosity of liquids by dispersing ultra-fine particle. Netsu Bussei. 1993; 7:4:227233.
    [Google Scholar]
  2. Choi SUS, Eastman JA. Enhancing Thermal Conductivity of Fluids with Nanoparticles. Developments and Applications of Non-Newtonian Flows. In: Singer DAWang HP, eds. FED. 231. New York: ASME 1995;:99105.
    [Google Scholar]
  3. Eastman JA, Choi US, Li S, Soyez G, Thompson LJ, DiMelfi RJ. Novel thermal properties of nanostructured materials. Journal of Metastable and Nanocrystalline Materials. 1999; 2-6::629634.
    [Google Scholar]
  4. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle – fluid mixture. J Thermophys Heat Transfer. 1999; 13:4:474480.
    [Google Scholar]
  5. Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transfer. 2003; 125::567574.
    [Google Scholar]
  6. Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: Science and Technology. New York: Wiley 2008.
    [Google Scholar]
  7. Taylor R, Coulombe S, Otanicar T, Phelan P, Gunawan A, Lv W, Rosengarten G, Prasher R, Tyagi H. Small particles, big impacts: a review of the diverse applications of nanofluids. J Appl Phys. 2013; 113:1:011301.
    [Google Scholar]
  8. Timofeeva E, Gavrilov A, McCloskey J, Tolmachev Y, Sprunt S, Lopatina L, Selinger J. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007; 76:6:061203.
    [Google Scholar]
  9. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys. 2006; 100:4:044325.
    [Google Scholar]
  10. Beck MP, Sun T, Teja AS. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilib. 2007; 260:2:275278.
    [Google Scholar]
  11. Buongiorno J, Venerus DC, Prabhat N, McKrell T, Townsend J, Christianson R, Tolmachev YV, Keblinski P, Hu L-W, Alvarado JL, Bang IC, Bishnoi SW, Bonetti M, Botz F, Cecere A, Chang Y, Chen G, Chen H, Chung SJ, Chyu MK, Das SK, Di Paola R, Ding Y, Dubois F, Dzido G, Eapen J, Escher W, Funfschilling D, Galand Q, Gao J, Gharagozloo PE, Goodson KE, Gutierrez JG, Hong H, Horton M, Hwang KS, Iorio CS, Jang SP, Jarzebski AB, Jiang Y, Jin L, Kabelac S, Kamath A, Kedzierski MA, Kieng LG, Kim C, Kim J-H, Kim S, Lee SH, Leong KC, Manna I, Michel B, Ni R, Patel HE, Philip J, Poulikakos D, Reynaud C, Savino R, Singh PK, Song P, Sundararajan T, Timofeeva E, Tritcak T, Turanov AN, Van Vaerenbergh S, Wen D, Witharana S, Yang C, Yeh W-H, Zhao X-Z, Zhou S-Q. A benchmark study on the thermal conductivity of nanofluids. J Appl Phys. 2009; 106:9:094312.
    [Google Scholar]
  12. Sergis A, Hardalupas Y. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett. 2011; 6:1:391.
    [Google Scholar]
  13. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Tran. 1998; 11:2:151170.
    [Google Scholar]
  14. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Tran. 2003; 125:1:151155.
    [Google Scholar]
  15. Zeinali Heris S, Nasr Esfahany M, Etemad SG. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. Int J Heat Fluid Flow. 2007; 28:2:203210.
    [Google Scholar]
  16. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Tran. 2007; 50:11-12:22722281.
    [Google Scholar]
  17. Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Tran. 2009; 52:9-10:21892195.
    [Google Scholar]
  18. Hwang KS, Jang SP, Choi SUS. Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime. Int J Heat Mass Tran. 2009; 52:1-2:193199.
    [Google Scholar]
  19. Williams W, Buongiorno J, Hu L. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. J Heat Tran. 2008; 130:4:042411042412.
    [Google Scholar]
  20. Rea U, McKrell T, Hu L-W, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids. Int J Heat Mass Tran. 2009; 52:7-8:20422048.
    [Google Scholar]
  21. Mahbubul IM, Saidur R, Amalina MA. Latest developments on the viscosity of nanofluids. Int J Heat Mass Tran. 2012; 55:4:874885.
    [Google Scholar]
  22. Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Tran. 2004; 47:24:51815188.
    [Google Scholar]
  23. Buongiorno J. Convective transport in nanofluids. J Heat Tran. 2006; 128:3:240250.
    [Google Scholar]
  24. Anoop KB, Kabelac S, Sundararajan T, Das SK. Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J Appl Phys. 2009; 106:3:034909.
    [Google Scholar]
  25. Vadasz JJ, Govender S, Vadasz P. Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations. Int J Heat Mass Tran. 2005; 48:13:26732683.
    [Google Scholar]
  26. VDI Wärmeatlas, 9. Berechnungsblätter für den Wärmeübergang (VDI-Buch). Auflage, Berlin: Springer-Verlag 2006.
    [Google Scholar]
  27. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006; 89:13:133108.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.39
Loading
/content/journals/10.5339/connect.2013.39
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): effective medium theory , guarded hot plate , thermal conductivity and viscosity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error