1887
Volume 2014, Issue 1
  •  E-ISSN:  Will be obtained soon 2223-506X

Abstract

The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Knowledge of the complex mechanical interactions of these load-bearing structures is of use when treatments of relevant diseases are evaluated and assisting devices are designed. Numerical tools, such as the finite element analysis, are suitable for such modeling and can be used with success by students as well as experienced researchers alike. These tools have been used to develop an accurate human knee joint model to study its mechanical behavior.

This model has been used to study the kinematics of a PCL deficient human knee joint. Both linear and non-linear material models were developed for comparison purposes.

The main objective of this study is to verify developed knee joint models. Displacement results for static load cases presented in previous modeling work were used. Results were in agreement with those of the study employed for validation.

Results were compared with work from previous authors' studies, for the intact and the ACL deficient human knee joint. This aimed to understand the behavior of the knee joint and to verify that the model produced results in agreement with real life knee joint behavior with these types of injuries, as described in literature.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.21
2014-10-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.21.html?itemId=/content/journals/10.5339/connect.2014.21&mimeType=html&fmt=ahah

References

  1. Lo JH, Muller O, Wunschel M, Bauer S, Wulker N. Forces in anterior cruciate ligament during simulated weight-bearing flexion with anterior and internal rotational tibial load. J Biomech. 2008; 41:9:18551861.
    [Google Scholar]
  2. Adler GG. All-Inside posterior cruciate ligament reconstruction with a GraftLink. Arthrosc Tech. 2013; 2:2:15.
    [Google Scholar]
  3. Chandrasekaran S, Ma D, Scarvell JM, Woods KR, Smith PN. A review of the anatomical, biomechanical and kinematic findings of posterior cruciate ligament injury with respect to non-operative management. Knee. 2012; 19:6:738745.
    [Google Scholar]
  4. Rosenthal MD, Rainey CE, Tognoni A, Worms R. Evaluation and management of posterior cruciate ligament injuries. Phys Ther Sport. 2012; 13:4:196208.
    [Google Scholar]
  5. Slullitel D, Galan H, Ojeda V, Seri M. Double-bundle “all-inside” posterior cruciate ligament reconstruction. Arthrosc Tech. 2012; 1:2:e141e148.
    [Google Scholar]
  6. Harner CD, Hoher J. Evaluation and treatment of posterior cruciate ligament injuries. Am J Sports Med. 1998; 26:3:471482.
    [Google Scholar]
  7. Kennedy JC, Grainger RW. The posterior cruciate ligament. J Trauma. 1967; 7:3:367377.
    [Google Scholar]
  8. White EA, Patel DB, Matcuk GR, Forrester DM, Lundquist RB, Rick Hatch GF III, Vangsness CT, Gottsegen CJ. Cruciate ligament avulsion fractures: Anatomy, biomechanics, injury patterns, and approach to management. Emerg Radiol. 2013; 20:5:429440.
    [Google Scholar]
  9. Baldwin MA, Clary CW, Fitzpatrick CK, Deacy JS, Maletsky LP, Rullkoetter PJ. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J Biomech. 2012; 45:3:474483.
    [Google Scholar]
  10. Abdullah AH, Rashid H, Mahmud J, Othman MF, Ibrahim MWA-J. Effects of screw materials in anterior cruciate ligament reconstruction using finite element analysis. Procedia Eng. 2012; 41::16141619.
    [Google Scholar]
  11. Park HS, Ahn C, Fung DT, Ren Y, Zhang LQ. A knee-specific finite element analysis of the human anterior cruciate ligament impingement against the femoral intercondylar notch. J Biomech. 2010; 43:10:20392042.
    [Google Scholar]
  12. Peña E, Calvo B, Martínez MA, Doblaré M. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech. 2006; 39:9:16861701.
    [Google Scholar]
  13. Weiss JA, Gardiner JC, Ellis BJ, Lujan TJ, Phatak NS. Three-dimensional finite element modeling of ligaments: Technical aspects. Med Eng Phys. 2005; 27:10:845861.
    [Google Scholar]
  14. Zelle J, Van der Zanden AC, De Waal Malefijt M, Verdonschot N. Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech. 2009; 24:10:842849.
    [Google Scholar]
  15. Yoon KH, Kim YH, Ha JH, Kim K, Park WM. Biomechanical evaluation of double bundle augmentation of posterior cruciate ligament using finite element analysis. Clin Biomech. 2010; 25:10:10421046.
    [Google Scholar]
  16. Ramaniraka NA, Terrier A, Theumann N, Siegrist O. Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: A finite element analysis. Clin Biomech. 2005; 20:4:434442.
    [Google Scholar]
  17. Zelle J, Heesterbeek PJC, De Waal Malefijt M, Verdonschot N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys. 2010; 32:7:700707.
    [Google Scholar]
  18. Moglo KE, Shirazi-Adl A. Biomechanics of passive knee joint in drawer: Load transmission in intact and ACL-deficient joints. Knee. 2003; 10:3:265276.
    [Google Scholar]
  19. Moglo KE, Shirazi-Adl A. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral drawer in flexion: A finite element study. Clin Biomech. 2003; 18:8:751759.
    [Google Scholar]
  20. Cowin SC. Bone mechanics. Boca Raton: CRC Press 1989.
    [Google Scholar]
  21. Kingsmill VJ, Boyde A. Variation in the apparent density of human mandibular bone with age and dental status. J Anatomy. 1998; 192::233244.
    [Google Scholar]
  22. Woo SLY, Almarza AJ, Liang R, Fisher MB. Functional tissue engineering of ligament and tendon injuries. In: Mao JMikos AGVunjak-Novakovic GAntala A, eds. Translational approaches in tissue engineering and regenerative medicine. London: Artech House 2007:p.163.
    [Google Scholar]
  23. Chandrashekar N, Slauterbeck J, Hashemi J. Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: A cadaveric study. Am J Sports Med. 2005; 33::14921498.
    [Google Scholar]
  24. McDermott ID, Masouros SD, Amis AA. Biomechanics of the menisci of the knee. Curr Orthopaed. 2008; 22:3:193201.
    [Google Scholar]
  25. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR. A finite element model of the human knee joint for the study of tibio-femoral contact. J Biomech Eng. 2002; 124:3:273280.
    [Google Scholar]
  26. Fithian DC, Kelly MA, Mow VC. Material properties and structure-function relationships in the menisci. Clin Orthopaed Relat Res. 1990; 252::1931.
    [Google Scholar]
  27. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Biomechanical response of the passive human knee joint under anterior-posterior forces. Clin Biomech. 1998; 13:8:625633.
    [Google Scholar]
  28. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Biomechanics of the human knee joint in compression: Reconstruction, mesh generation and finite element analysis. Knee. 1995; 2:2:6979.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.21
Loading
/content/journals/10.5339/connect.2014.21
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): biomechanics , finite element modelling , knee ligament repair and posterior cruciate ligament
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error