1887
Volume 2013, Issue 1
  •  E-ISSN:  Will be obtained soon 2223-506X

Abstract

In this paper an inhomogeneous beam with a damping distributed along the length is considered. The beam is clamped at both ends and is assumed to vibrate in a transverse direction only. The total energy of the system at any time is estimated. Finally, an explicit form of exponential energy decay is obtained. Hence, the uniform stabilization of the system is achieved.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.21
2013-08-01
2020-06-05
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.21.html?itemId=/content/journals/10.5339/connect.2013.21&mimeType=html&fmt=ahah

References

  1. Love AEH. A Treatise on the Mathematical Theory of Elasticity. New York, NY: Dover Publications 1927;
    [Google Scholar]
  2. Timoshenko SP. History of Strength of Materials. New York, NY: Dover Publications 1953;
    [Google Scholar]
  3. Benaroya H. Mechanical Vibration. Englewood Cliffs, NJ: Prentice Hall 1998;
    [Google Scholar]
  4. Inman D. Engineering Vibration. Englewood Cliffs, NJ: Prentice Hall 1994;
    [Google Scholar]
  5. Meirovitch L. Analytical Methods in Vibrations. New York, NY: Macmillan Publications 1967;
    [Google Scholar]
  6. Meirovitch L. Elements of Vibration Analysis. New York, NY: McGraw-Hill Book Company 1986;
    [Google Scholar]
  7. Meirovitch L. Principles and Techniques of Vibrations. Englewood Cliffs, NJ: Prentice Hall 1997;
    [Google Scholar]
  8. Rao SS. Mechanical Vibrations. 3rd ed. Reading, MA: Addison-Wesley Publishing Company 1995;
    [Google Scholar]
  9. Thomson W. Theory of Vibration with Applications. 4th ed. Englewood Cliffs, NJ: Prentice Hall 1993;
    [Google Scholar]
  10. Lions JL. Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev. 1988; 30:1:168
    [Google Scholar]
  11. Ammari K, Tuesnak M. Stabilization of Bernoulli-Euler beams by means of a point feedback force. SIAM J Control Optim. 2000; 39:4:11601181
    [Google Scholar]
  12. Liu K, Liu Z. Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping. SIAM J Control Optim. 1998; 36:3:10861098
    [Google Scholar]
  13. Nagaya K. Method of control of flexible beams subjected to forced vibrations by use of inertia force cancellations. J Sound Vibr. 1995; 184:2:185194
    [Google Scholar]
  14. Rebarber R. Exponential stability of coupled beams with dissipative joints: a frequency domain approach. SIAM J Control Optim. 1995; 33:1:128
    [Google Scholar]
  15. Chen G, Delfour MC, Krall AM, Payre G. Modeling, stabilization and control of serially connected beams. SIAM J Control Optim. 1987; 25:3:526546
    [Google Scholar]
  16. Chen G. Energy decay estimates and exact boundary-value controllability for the wave equation in a bounded domain. J Math Pures Appl. 1979; 9:58:249273
    [Google Scholar]
  17. Chen G. A note on the boundary stabilization of the wave equation. SIAM J Control Optim. 1981; 19:1:106113
    [Google Scholar]
  18. Lagnese JE. Note on boundary stabilization of wave equations. SIAM J Control Optim. 1988; 26:5:12501256
    [Google Scholar]
  19. Lagnese J. Decay of solutions of wave equations in a bounded region with boundary dissipation. J Diff Eqns. 1983; 50:2:163182
    [Google Scholar]
  20. Komornik V. Rapid boundary stabilization of the wave equation. SIAM J Control Optim. 1991; 29:1:197208
    [Google Scholar]
  21. Komornik V, Zuazua E. A direct method for boundary stabilization of the wave equation. J Math Pures Appl. 1990; 69:1:3354
    [Google Scholar]
  22. Nandi PK, Gorain GC, Kar S. Uniform exponential stabilization for flexural vibrations of a solar panel. Appl Math. 2011; 02:06:661665
    [Google Scholar]
  23. Mitrinović DS, Pečarić JE, Fink AM. Inequalities Involving Functions and Their Integrals and Derivatives. Dordrecht, The Netherlands: Kluwer 1991;
    [Google Scholar]
  24. Gorain GC. Exponential energy decay estimates for the solutions of n-dimensional Kirchhoff type wave equation. Appl Math Comput. 2006; 177:1:235242
    [Google Scholar]
  25. Gorain GC, Bose SK. Exact controllability and boundary stabilization of torsional vibrations of an internally damped flexible space structures. J Optim Theory Appl. 1998; 99:2:423442
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.21
Loading
  • Article Type: Research Article
Keyword(s): energy decay estimate , inhomogeneous beam , transverse vibrations and uniform stabilization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error