1887
Volume 2013, Issue 1
  • E-ISSN: 2223-506X

We realize noncommutative phase spaces as coadjoint orbits of extensions of the Aristotle group in a two-dimensional space. Through these constructions the momenta of the phase spaces do not commute due to the presence of a naturally introduced magnetic field. These cases correspond to the minimal coupling of the momentum with a magnetic potential.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/connect.2013.2
٢٠١٣-٠٧-٠١
٢٠٢٥-١٢-١٦

القياسات

Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.2.html?itemId=/content/journals/10.5339/connect.2013.2&mimeType=html&fmt=ahah

References

  1. Abraham R, Marsden JE. Foundations of mechanics. 2nd ed. Reading, Mass.-London: Benjamin/Cummings Publishing Co., Inc., Advanced Book Program 1978;
    [Google الباحث العلمي]
  2. Guillemin V, Sternberg S. Symplectic techniques in physics. Cambridge: Cambridge University Press 1984;
    [Google الباحث العلمي]
  3. Souriau JM. Structure des systèmes dynamiques. 1970;. Dunod
  4. Duval C, Horvathy PA. Exotic Galilean Symmetry in the noncommutative plane and the Hall effect. J Phys A Math Gen. 2001; 34::1009710107, [hep-th/ 0106089]
    [Google الباحث العلمي]
  5. Duval C, Horvathy PA. The exotic Galilei group and the Peierls substitution. Phys Lett. 2000; B 479::284290, [hep-th/ 0002233]
    [Google الباحث العلمي]
  6. Horvathy PA, Martina L, Stichel PC. Exotic Galilean symmetry and non commutative mechanics. SIGMA. 2010; 6::26
    [Google الباحث العلمي]
  7. Horvathy PA. Non-Commuting coordinates in vortex dynamics and in the Hall effect related to exotic Galilean Symmetry. 2002;. arXiv: hep-th/ 0207075 v 1
  8. Vanhecke FJ, Sigaud C, da Silva AR. Non commutative configuration space, classical and quantum mechanics aspects. Braz J Phys. 2006; 36::194207, Math-ph/ 0502003
    [Google الباحث العلمي]
  9. Duval C, Horvathy Z, Horvathy PA. Geometrical spinoptics and the optical Hall effect. J Geom Phys. 2007; 57::925. [math-ph/ 0509031]
    [Google الباحث العلمي]
  10. Souriau JM. Physique et Géométrie, Preprint CTP-81/P.1298,29 Avril 1982, 11–17
  11. Ngendakumana A, Nzotungicimpaye J, Todjihounde L. Noncommutative phase spaces by coadjoint orbit method. SIGMA. 2011; 7::45
    [Google الباحث العلمي]
  12. Ngendakumana A, Nzotungicimpaye J, Todjihounde L. Para-Galilean versus Galilean Noncommutative Phase Spaces, arXiv: 1207.3919v1, [math-ph],2012
  13. Hamermesh M. Group Theory and Its Applications to Physical Problems. Addison-Wesley Series in Physics. Reading, Mass.-London: Addison-Wesley Publishing Co., Inc. 1962;
    [Google الباحث العلمي]
  14. Kirillov AA. Elements of Theory of Representations. Grundlehren der Mathematischen Wissenschaften, Band 220. Berlin-New York: Springer -Verlag 1976;
    [Google الباحث العلمي]
  15. Kostant B. Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87–208
    [Google الباحث العلمي]
  16. Bacry H, Lévy-Leblond JM, J Math Phys. 1968; V9::1605
    [Google الباحث العلمي]
  17. Nzotungicimpaye J. Galilei-Newton law by group theoretical methods. Lett Math Phys. 1988; 15::101110
    [Google الباحث العلمي]
  18. Hall BC. Lie groups, Lie algebras and Representations. New York: Springer-Verlag 2003;
    [Google الباحث العلمي]
/content/journals/10.5339/connect.2013.2
Loading
  • نوع المستند: Research Article
الموضوعات الرئيسية coadjoint orbitsmagnetic fieldsnoncentral extensionnoncommutative phase space and symplectic realizations

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error