Volume 2013, Issue 1
  • EISSN: 2223-506X


We realize noncommutative phase spaces as coadjoint orbits of extensions of the Aristotle group in a two-dimensional space. Through these constructions the momenta of the phase spaces do not commute due to the presence of a naturally introduced magnetic field. These cases correspond to the minimal coupling of the momentum with a magnetic potential.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abraham R, Marsden JE. Foundations of mechanics. 2nd ed. Reading, Mass.-London: Benjamin/Cummings Publishing Co., Inc., Advanced Book Program 1978;
    [Google Scholar]
  2. Guillemin V, Sternberg S. Symplectic techniques in physics. Cambridge: Cambridge University Press 1984;
    [Google Scholar]
  3. Souriau JM. Structure des systèmes dynamiques. 1970;. Dunod
  4. Duval C, Horvathy PA. Exotic Galilean Symmetry in the noncommutative plane and the Hall effect. J Phys A Math Gen. 2001; 34::1009710107, [hep-th/ 0106089]
    [Google Scholar]
  5. Duval C, Horvathy PA. The exotic Galilei group and the Peierls substitution. Phys Lett. 2000; B 479::284290, [hep-th/ 0002233]
    [Google Scholar]
  6. Horvathy PA, Martina L, Stichel PC. Exotic Galilean symmetry and non commutative mechanics. SIGMA. 2010; 6::26
    [Google Scholar]
  7. Horvathy PA. Non-Commuting coordinates in vortex dynamics and in the Hall effect related to exotic Galilean Symmetry. 2002;. arXiv: hep-th/ 0207075 v 1
  8. Vanhecke FJ, Sigaud C, da Silva AR. Non commutative configuration space, classical and quantum mechanics aspects. Braz J Phys. 2006; 36::194207, Math-ph/ 0502003
    [Google Scholar]
  9. Duval C, Horvathy Z, Horvathy PA. Geometrical spinoptics and the optical Hall effect. J Geom Phys. 2007; 57::925. [math-ph/ 0509031]
    [Google Scholar]
  10. Souriau JM. Physique et Géométrie, Preprint CTP-81/P.1298,29 Avril 1982, 11–17
  11. Ngendakumana A, Nzotungicimpaye J, Todjihounde L. Noncommutative phase spaces by coadjoint orbit method. SIGMA. 2011; 7::45
    [Google Scholar]
  12. Ngendakumana A, Nzotungicimpaye J, Todjihounde L. Para-Galilean versus Galilean Noncommutative Phase Spaces, arXiv: 1207.3919v1, [math-ph],2012
  13. Hamermesh M. Group Theory and Its Applications to Physical Problems. Addison-Wesley Series in Physics. Reading, Mass.-London: Addison-Wesley Publishing Co., Inc. 1962;
    [Google Scholar]
  14. Kirillov AA. Elements of Theory of Representations. Grundlehren der Mathematischen Wissenschaften, Band 220. Berlin-New York: Springer -Verlag 1976;
    [Google Scholar]
  15. Kostant B. Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87–208
    [Google Scholar]
  16. Bacry H, Lévy-Leblond JM, J Math Phys. 1968; V9::1605
    [Google Scholar]
  17. Nzotungicimpaye J. Galilei-Newton law by group theoretical methods. Lett Math Phys. 1988; 15::101110
    [Google Scholar]
  18. Hall BC. Lie groups, Lie algebras and Representations. New York: Springer-Verlag 2003;
    [Google Scholar]
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error