1887
Volume 2013, Issue 1
  • EISSN: 2220-2749

Abstract

Preeclampsia is a pregnancy specific condition characterized by hypertension and proteinuria. It complicates about 10% of all pregnancies. It is a major cause of maternal and fetal morbidity and mortality. Interestingly, preeclampsia may have an impact on the health of the mother or infant, beyond the pregnancy. It is believed that several ligands and receptors of different families of growth factors have been involved in the development of preeclampsia. We performed a systematic search of PubMed including combination of terms such as preeclampsia, growth factors, treatment, vascular endothelial growth factor A, activin A, inhibin A, placental growth factor, transforming growth factor β-1, Nodal, placenta, trophoblast cells, biomarkers and detection. In this review we have summarized current knowledge on the role of growth factors in early detection and treatment of preeclampsia. Although these growth factors have significant roles in normal and complicated pregnancies, the current value of these growth factors as biomarkers, for the precise prediction of preeclampsia, has its limitation. Therefore, future studies need to be done to support some of the very promising and interesting data to develop affordable and widely available tests for early detection and treatment of preeclampsia.

Loading

Article metrics loading...

/content/journals/10.5339/avi.2013.4
2013-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/avi/2013/1/avi.2013.4.html?itemId=/content/journals/10.5339/avi.2013.4&mimeType=html&fmt=ahah

References

  1. Scazzocchio E, Figueras F. Contemporary prediction of preeclampsia. Curr Opin Obstet Gynecol. 2011; 23::6571
    [Google Scholar]
  2. Tang LC, Kwok AC, Wong AY, Lee YY, Sun KO, So AP. Critical care in obstetrical patients: an eight-year review. Chin Med J (Engl). 1997; 110:12:936941
    [Google Scholar]
  3. Hawfield A, Freedman BI. Pre-eclampsia: the pivotal role of the placenta in its pathophysiology and markers for early detection. Ther Adv Cardiovasc Dis. 2009; 3::6573
    [Google Scholar]
  4. Tomsin K, Mesens T, Molenberghs G, Peeters L, Gyselaers W. Characteristics of heart, arteries, and veins in low and high cardiac output preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2013;, pii: S0301-2115(13)00146-2. doi: 10.1016/j.ejogrb.2013.03.016. [Epub ahead of print]
    [Google Scholar]
  5. Garovic VD, August P. Preeclampsia and the future risk of hypertension: the pregnant evidence. Curr Hypertens Rep. 2013; 15::114121
    [Google Scholar]
  6. Berks D, Hoedjes M, Raat H, Duvekot JJ, Steegers EA, Habbema JD. Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: a literature-based study. BJOG. 2013; 120:8:924931, doi: 10.1111/1471-0528.12191. Epub Mar 26, 2013
    [Google Scholar]
  7. Ghazal-Aswad S, Badrinath P, Sidky I, Safi TH, Gargash H, Abdul-Razak Y, Mirghani H. Severe acute maternal morbidity in a high-income developing multiethnic country. Matern Child Health J. 2013; 17:3:399404
    [Google Scholar]
  8. Jido TA, Yakasai IA. Preeclampsia: a review of the evidence. Ann Afr Med. 2013; 12::7585
    [Google Scholar]
  9. Mattar F, Sibai BM. Eclampsia. VIII. Risk factors for maternal morbidity. Am J Obstet Gynecol. 2000; 182::307312
    [Google Scholar]
  10. Masuyama H, Nobumoto E, Segawa T, Hiramatsu Y. Severe superimposed preeclampsia with obesity, diabetes and a mild imbalance of angiogenic factors. Acta Med Okayama. 2012; 66::171175
    [Google Scholar]
  11. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011; 66::497506
    [Google Scholar]
  12. Hasko M, Biringer K, Biskupska BK, Danko J. Selected markers in early prediction of preeclampsia. Ceska Gynekol. 2011; 76::135139
    [Google Scholar]
  13. Maynard S, Epstein FH, Karumanchi SA. Preeclampsia and angiogenic imbalance. Annu Rev Med. 2008; 59::6178
    [Google Scholar]
  14. Than NG, Romero R, Hillermann R, Cozzi V, Nie G, Huppertz B. Prediction of preeclampsia – a workshop report. Placenta. 2008; 29::S83S85
    [Google Scholar]
  15. Thangaratinam S, Langenveld J, Mol BW, Khan KS. Prediction and primary prevention of pre-eclampsia. Best Pract Res Clin Obstet Gynaecol. 2011; 25::419433
    [Google Scholar]
  16. Beaufils M. Pregnancy hypertension. Nephrol Ther. 2010; 6::200214
    [Google Scholar]
  17. Boulanger H, Flamant M. New insights in the pathophysiology of preeclampsia and potential therapeutic implications. Nephrol Ther. 2007; 3::437448
    [Google Scholar]
  18. Grill S, Rusterholz C, Zanetti-Dällenbach R, Tercanli S, Holzgreve W, Hahn S, Lapaire O. Potential markers of preeclampsia–a review. Reprod Biol Endocrinol. 2009; 7::70. doi: 10.1186/1477-7827-7-70
    [Google Scholar]
  19. Meads CA, Cnossen JS, Meher S, Juarez-Garcia A, ter Riet G, Duley L, Roberts TE, Mol BW, van der Post JA, Leeflang MM, Barton PM, Hyde CJ, Gupta JK, Khan KS. Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling. Health Technol Assess. 2008; 12::1270
    [Google Scholar]
  20. Goldenberg RL, McClure EM, Macguire ER, Kamath BD, Jobe AH. Lessons for low-income regions following the reduction in hypertension-related maternal mortality in high-income countries. Int J Gynaecol Obstet. 2011; 113:2:9195
    [Google Scholar]
  21. Kuc S, Wortelboer EJ, van Rijn BB, Franx A, Visser GH, Schielen PC. Evaluation of 7 serum biomarkers and uterine artery Doppler ultrasound for first-trimester prediction of preeclampsia: a systematic review. Obstet Gynecol Surv. 2011; 66:4:225239
    [Google Scholar]
  22. Hertig A, Liere P. New markers in preeclampsia. Clin Chim Acta. 2010; 411::15911595
    [Google Scholar]
  23. Papageorghiou AT, Campbell S. First trimester screening for preeclampsia. Curr Opin Obstet Gynecol. 2006; 18::594600
    [Google Scholar]
  24. Smets EM, Visser A, Go ATJI, van Vugt JMG, Oudejans CBM. Novel biomarkers in preeclampsia. Clin Chim Acta. 2006; 364::2232
    [Google Scholar]
  25. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011; 31::3346
    [Google Scholar]
  26. Yu L, Li D, Liao QP, Yang HX, Cao B, Fu G, Ye G, Bai Y, Wang H, Cui N, Liu M, Li YX, Li J, Peng C, Wang YL. High levels of activin A detected in preeclamptic placenta induce trophoblast cell apoptosis by promoting nodal signaling. J Clin Endocrinol Metab. 2012; 97:8:E1370E1379
    [Google Scholar]
  27. Pijnenborg R, Robertson WB, Brosens I, Dixon G. Review article: trophoblast invasion and the establishment of haemochorial placentation in man and laboratory animals. Placenta. 1981; 2::7191
    [Google Scholar]
  28. Pijnenborg R, Bland JM, Robertson WB, Dixon G, Brosens I. The pattern of interstitial trophoblastic invasion of the myometrium in early human pregnancy. Placenta. 1981; 2:4:303316
    [Google Scholar]
  29. Pijnenborg R, Anthony J, Davey DA, Rees A, Tiltman A, Vercruysse L, van Assche A. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol. 1991; 98:7:648655
    [Google Scholar]
  30. Pietro L, Daher S, Rudge MV, Calderon IM, Damasceno DC, Sinzato YK, Bandeira C, Bevilacqua E. Vascular endothelial growth factor and VEGF-receptor expression in placenta of hyperglycaemic pregnant women. Placenta. 2010; 31::770780
    [Google Scholar]
  31. Levine RJ, Thadhani R, Qian C, Lam C, Lim KH, Yu KF, Blink AL, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Urinary placental growth factor and risk of preeclampsia. JAMA. 2005; 293::7785
    [Google Scholar]
  32. Akolekar R, Zaragoza E, Poon LC, Pepes S, Nicolaides KH. Maternal serum placental growth factor at 11+0 to 13+6 weeks of gestation in the prediction of pre-eclampsia. Ultrasound Obstet Gynecol. 2008; 32::732739
    [Google Scholar]
  33. Tossidou I, Schiffer M. TGF-beta/BMP pathways and the podocyte. Semin Nephrol. 2012; 32::368376
    [Google Scholar]
  34. Chen Q, Chen L, Liu B, Vialli C, Stone P, Ching LM, Chamley L. The role of autocrine TGFbeta1 in endothelial cell activation induced by phagocytosis of necrotic trophoblasts: a possible role in the pathogenesis of pre-eclampsia. J Pathol. 2010; 221:1:8795
    [Google Scholar]
  35. Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition. Mol Cell Endocrinol. 2012; 359::212
    [Google Scholar]
  36. Robertson DM. Inhibins and activins in blood: predictors of female reproductive health? Mol Cell Endocrinol. 2012; 359::7884
    [Google Scholar]
  37. Morris JM, Gopaul NK, Endresen MJ, Knight M, Linton EA, Dhir S, Anggård EE, Redman CW. Circulating markers of oxidative stress are raised in normal pregnancy and pre-eclampsia. Br J Obstet Gynaecol. 1998; 105:11:11951199
    [Google Scholar]
  38. Lim JH, Kim SY, Park SY, Lee MH, Yang JH, Kim MY, Chung JH, Lee SW, Ryu HM. Soluble endoglin and transforming growth factor-beta1 in women who subsequently developed preeclampsia. Prenat Diagn. 2009; 29::471476
    [Google Scholar]
  39. ten Dijke P, Goumans MJ, Pardali E. Endoglin in angiogenesis and vascular diseases. Angiogenesis. 2008; 11::7989
    [Google Scholar]
  40. Munir S, Xu G, Wu Y, Yang B, Lala PK, Peng C. Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J Biol Chem. 2004; 279::3127731286
    [Google Scholar]
  41. Fu G, Ye G, Nadeem L, Ji L, Manchanda T, Wang Y, Zhao Y, Qiao J, Wang YL, Lye S, Yang BB, Peng C. MicroRNA-376c impairs transforming growth factor-beta and nodal signaling to promote trophoblast cell proliferation and invasion. Hypertension. 2013; 61::864872
    [Google Scholar]
  42. Florio P, Gabbanini M, Borges LE, Bonaccorsi L, Pinzauti S, Reis FM, Boy Torres P, Rago G, Litta P, Petraglia F. Activins and related proteins in the establishment of pregnancy. Reprod Sci. 2010; 17:4:320330
    [Google Scholar]
  43. McNeilly AS. Diagnostic applications for inhibin and activins. Mol Cell Endocrinol. 2012; 359::121125
    [Google Scholar]
  44. Peng C, Mukai ST. Activins and their receptors in female reproduction. Biochem Cell Biol. 2000; 78::261279
    [Google Scholar]
  45. Feizollahzadeh S, Taheripanah R, Khani M, Farokhia B, Amani D. Promoter region polymorphisms in the transforming growth factor beta-1 (TGFbeta1) gene and serum TGFbeta1 concentration in preeclamptic and control Iranian women. J Reprod Immunol. 2012; 94::216221
    [Google Scholar]
  46. Yinon Y, Nevo O, Xu J, Many A, Rolfo A, Todros T, Post M, Caniggia I. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3. Am J Pathol. 2008; 172:1:7785
    [Google Scholar]
  47. Ferrara N. Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res. 2000; 55::1535, ; discussion 35–6
    [Google Scholar]
  48. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science. 1992; 255::989991
    [Google Scholar]
  49. Purwosunu Y, Sekizawa A, Yoshimura S, Farina A, Wibowo N, Nakamura M, Shimizu H, Okai T. Expression of angiogenesis-related genes in the cellular component of the blood of preeclamptic women. Reprod Sci. 2009; 16::857864
    [Google Scholar]
  50. Gerber HP, Condorelli F, Park J, Ferrara N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/KDR, is up-regulated by hypoxia. J Biol Chem. 1997; 272::2365923667
    [Google Scholar]
  51. Andraweera PH, Dekker GA, Roberts CT. The vascular endothelial growth factor family in adverse pregnancy outcomes. Hum Reprod Update. 2012; 18::436457
    [Google Scholar]
  52. Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol. 2000; 156::321331
    [Google Scholar]
  53. Zhou Y, Genbacev O, Damsky CH, Fisher SJ. Oxygen regulates human cytotrophoblast differentiation and invasion: implications for endovascular invasion in normal pregnancy and in pre-eclampsia. J Reprod Immunol. 1998; 39::197213
    [Google Scholar]
  54. Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest. 1997; 99::21522164
    [Google Scholar]
  55. Verdonk K, Visser W, Steegers EA, Kappers M, Danser AH, van den Meiracker AH. New insights into the pathogenesis of pre-eclampsia: the role of angiogenesis-inhibiting factors. Ned Tijdschr Geneeskd. 2011; 155::A2946
    [Google Scholar]
  56. Chaiworapongsa T, Romero R, Espinoza J, Bujold E, Mee Kim Y, Gonçalves LF, Gomez R, Edwin S. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol. 2004; 190:6:15411547, ; discussion 1547–50
    [Google Scholar]
  57. Li Z, Zhang Y, Ying Ma J, Kapoun AM, Shao Q, Kerr I, Lam A, O'Young G, Sannajust F, Stathis P, Schreiner G, Karumanchi SA, Protter AA, Pollitt NS. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension. 2007; 50::686692
    [Google Scholar]
  58. De Falco S, Gigante B, Persico MG. Structure and function of placental growth factor. Trends Cardiovasc Med. 2002; 12::241246
    [Google Scholar]
  59. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004; 350::672683
    [Google Scholar]
  60. Poon LC, Zaragoza E, Akolekar R, Anagnostopoulos E, Nicolaides KH. Maternal serum placental growth factor (PlGF) in small for gestational age pregnancy at 11(+0) to 13(+6) weeks of gestation. Prenat Diagn. 2008; 28::11101115
    [Google Scholar]
  61. Sunderji S, Gaziano E, Wothe D, Rogers LC, Sibai B, Karumanchi SA, Hodges-Savola C. Automated assays for sVEGF R1 and PlGF as an aid in the diagnosis of preterm preeclampsia: a prospective clinical study. Am J Obstet Gynecol. 2010; 202::40e140e7
    [Google Scholar]
  62. Verlohren S, Galindo A, Schlembach D, Zeisler H, Herraiz I, Moertl MG, Pape J, Dudenhausen JW, Denk B, Stepan H. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol. 2010; 202::161e1161e11
    [Google Scholar]
  63. Xu G, Zhong Y, Munir S, Yang BB, Tsang BK, Peng C. Nodal induces apoptosis and inhibits proliferation in human epithelial ovarian cancer cells via activin receptor-like kinase 7. J Clin Endocrinol Metab. 2004; 89::55235534
    [Google Scholar]
  64. Roten LT, Johnson MP, Forsmo S, Fitzpatrick E, Dyer TD, Brennecke SP, Blangero J, Moses EK, Austgulen R. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet. 2009; 17::250257
    [Google Scholar]
  65. Fitzpatrick E, Johnson MP, Dyer TD, Forrest S, Elliott K, Blangero J, Brennecke SP, Moses EK. Genetic association of the activin A receptor gene (ACVR2A) and pre-eclampsia. Mol Hum Reprod. 2009; 15::195204
    [Google Scholar]
  66. Ma GT, Soloveva V, Tzeng SJ, Lowe LA, Pfendler KC, Iannaccone PM, Kuehn MR, Linzer DI. Nodal regulates trophoblast differentiation and placental development. Dev Biol. 2001; 236::124135
    [Google Scholar]
  67. Guzman-Ayala M, Ben-Haim N, Beck S, Constam DB. Nodal protein processing and fibroblast growth factor 4 synergize to maintain a trophoblast stem cell microenvironment. Proc Natl Acad Sci U S A. 2004; 101::1565615660
    [Google Scholar]
  68. Nadeem L, Munir S, Fu G, Dunk C, Baczyk D, Caniggia I, Lye S, Peng C. Nodal signals through activin receptor-like kinase 7 to inhibit trophoblast migration and invasion: implication in the pathogenesis of preeclampsia. Am J Pathol. 2011; 178::11771189
    [Google Scholar]
  69. Lim JH, Kim SY, Park SY, Yang JH, Kim MY, Ryu HM. Effective prediction of preeclampsia by a combined ratio of angiogenesis-related factors. Obstet Gynecol. 2008; 111::14031409
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/avi.2013.4
Loading
/content/journals/10.5339/avi.2013.4
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error