1887
Volume 2014, Issue 1
  • ISSN: 2223-0440
  • EISSN:

Abstract

The cancer of the skin is an increasing problem for public health worldwide. The fair skin populations that are environmentally or occupationally exposed to solar ultraviolet (UV)-radiation are the most affected. Intensive research investigating the molecular mechanisms of skin cancer is ongoing, however the role of noncoding RNAs in the pathology of cutaneous cell carcinoma is not fully understood. Accumulating evidence show that miRNAs play an important role in physiologic, pathologic and carcinogenic processes but their role in epithelial skin cancers (i.e. basal cell carcinoma and squamous cell carcinoma) was to date not sufficiently highlighted. MiRNAs are single-stranded small RNAs which specifically target mRNAs for translational repression and/or mRNA decay. In this review we focus on the latest findings in this area of research reviewing the newest research trends and perspectives.

Loading

Article metrics loading...

/content/journals/10.5339/jlghs.2014.1
2014-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jlghs/2014/1/jlghs.2014.1.html?itemId=/content/journals/10.5339/jlghs.2014.1&mimeType=html&fmt=ahah

References

  1. Reichrath J, Reichrath S. Hope and challenge: the importance of ultraviolet (UV) radiation for cutaneous vitamin D synthesis and skin cancer. Scand J Clin Lab Invest Suppl. 2012; 243::112119, doi: 10.3109/00365513.2012.682876 .
    [Google Scholar]
  2. Kasper M, Jaks V, Hohl D, Toftgård R. Basal cell carcinoma – molecular biology and potential new therapies. J Clin Invest. 2012; 122:2:455463, doi: 10.1172/JCI58779 .
    [Google Scholar]
  3. Barbarotto E, Schmittgen TD, Calin GA. MicroRNAs and cancer: profile, profile, profile. Int J Cancer. 2008; 122:5:969977.
    [Google Scholar]
  4. Chang SS, Jiang WW, Smith I, Poeta LM, Begum S, Glazer C, Shan S, Westra W, Sidransky D, Califano JA. MicroRNA alterations in head and neck squamous cell carcinoma. Int J Cancer. 2008; 123:12:27912797.
    [Google Scholar]
  5. Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosisand treatment. Int J Cancer. 2008; 122:5:963968.
    [Google Scholar]
  6. Boldrup L, Coates PJ, Wahlgren M, Laurell G, Nylander K. Subsite-based alterations in miR-21, miR-125b, and miR-203 in squamous cell carcinoma of the oral cavity and correlation to important target proteins. J Carcinog. 2012; 11::18. doi: 10.4103/1477-3163.104007 .
    [Google Scholar]
  7. Florea AM, Büsselberg D. Breast cancer and possible mechanisms of therapy resistance. JLGHS. 2013; 2013:2, http://www.qscience.com/doi/full/10.5339/jlghs.2013.2 .
    [Google Scholar]
  8. Wilson AG. Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol. 2008; 79:8 Suppl:15141519, doi: 10.1902/jop.2008.080172 .
    [Google Scholar]
  9. Millington GW. Epigenetics and dermatological disease. Pharmacogenomics. 2008; 9:12:18351850, doi: 10.2217/14622416.9.12.1835 .
    [Google Scholar]
  10. Li Y, Sawalha AH, Lu Q. Aberrant DNA methylation in skin diseases. J Dermatol Sci. 2009; 54:3:143149, doi: 10.1016/j.jdermsci.2009.01.009. Epub2009 Apr 22.J Periodontol. 2008;79(8 Suppl):1514-9.
    [Google Scholar]
  11. Firnhaber JM. Diagnosis and treatment of Basal cell and squamous cell carcinoma. Am Fam Physician. 2012; 86:2:161168.
    [Google Scholar]
  12. Duan H, Jiang Y, Zhang H, Wu Y. MiR-320 and miR-494 affect cell cycles of primary murine bronchial epithelial cells exposed to benzo[a]pyrene. Toxicol In Vitro. 2010; 24:3:928935.
    [Google Scholar]
  13. Zhu JY, Pfuhl T, Motsch N, Barth S, Nicholls J, Grässer F, Meister G. Identification of novel Epstein-Barr virus microRNA genes from nasopharyngeal carcinomas. J Virol. 2009; 83:7:33333341, doi: 10.1128/JVI.01689-08 .
    [Google Scholar]
  14. Botchkareva NV. MicroRNA/mRNA regulatory networks in the control of skin development andregeneration. Cell Cycle. 2012; 11:3:468474, doi: 10.4161/cc.11.3.19058 .
    [Google Scholar]
  15. Childs G, Fazzari M, Kung G, Kawachi N, Brandwein-Gensler M, McLemore M, Chen Q, Burk RD, Smith RV, Prystowsky MB, Belbin TJ, Schlecht NF. Low-level expression of microRNAs let-7d and miR-205 are prognostic markers of head and neck squamous cell carcinoma. Am J Pathol. 2009; 174:3:736745.
    [Google Scholar]
  16. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006; 103:7:22572261.
    [Google Scholar]
  17. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 2008; 105:10:39033908, doi: 10.1073/pnas.0712321105 .
    [Google Scholar]
  18. Heffelfinger C, Ouyang Z, Engberg A, Leffell DJ, Hanlon AM, Gordon PB, Zheng W, Zhao H, Snyder MP, Bale AE. Correlation of Global MicroRNA Expression With Basal Cell Carcinoma Subtype. G3 (Bethesda). 2012; 2:2:279286, doi: 10.1534/g3.111.001115 .
    [Google Scholar]
  19. Sand M, Skrygan M, Sand D, Georgas D, Hahn SA, Gambichler T, Altmeyer P, Bechara FG. Expression of microRNAs in basal cell carcinoma. Br J Dermatol. 2012; 167:4:847855, doi: 10.1111/j.1365-2133.2012.11022.x .
    [Google Scholar]
  20. Liu CJ, Shen WG, Peng SY, Cheng HW, Kao SY, Lin SC, Chang KW. miR-134 induces oncogenicity and metastasis in head and neck carcinoma through targeting WWOX gene. Int J Cancer. 2014; 134:4:811821, doi: 10.1002/ijc.28358. Epub 2013 Oct 8.
    [Google Scholar]
  21. Jin Y, Chen D, Cabay RJ, Wang A, Crowe DL, Zhou X. Role of microRNA-138 as a potential tumor suppressor in head and neck squamous cell carcinoma. Int Rev Cell Mol Biol. 2013; 303::357385, doi: 10.1016/B978-0-12-407697-6.00009-X .
    [Google Scholar]
  22. Hui AB, Lenarduzzi M, Krushel T, Waldron L, Pintilie M, Shi W, Perez-Ordonez B, Jurisica I, O'Sullivan B, Waldron J, Gullane P, Cummings B, Liu FF. Comprehensive MicroRNA profiling for head and neck squamous cell carcinomas. Clin Cancer Res. 2010; 16:4:11291139.
    [Google Scholar]
  23. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. Oct. 2007; 104:40:1580515810.
    [Google Scholar]
  24. Marcucci G, Calin GA, Huebner K, Croce CM. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007; 104:40:1580515810.
    [Google Scholar]
  25. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005; 65:21:96289632.
    [Google Scholar]
  26. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association. Cancer Res. 2004; 64:11:37533756.
    [Google Scholar]
  27. Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64:11:37533756.
    [Google Scholar]
  28. Weiss GJ, Bemis LT, Nakajima E, Sugita M, Birks DK, Robinson WA, Varella-Garcia M, Bunn PA Jr, Haney J, Helfrich BA, Kato H, Hirsch FR, Franklin WA. EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines. Ann Oncol. 2008; 19:6:10531059, doi: 10.1093/annonc/mdn006 .
    [Google Scholar]
  29. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006; 9:3:189198.
    [Google Scholar]
  30. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, Kawahara K, Toki K, Kawakami K, Nishiyama K, Tsujimoto G, Nakagawa M, Seki N. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009; 125:2:345352, doi: 10.1002/ijc.24390 .
    [Google Scholar]
  31. Yamamoto N, Kinoshita T, Nohata N, Itesako T, Yoshino H, Enokida H, Nakagawa M, Shozu M, Seki N. Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. Int J Oncol. 2013; 42:5:15231532, doi: 10.3892/ijo.2013.1851 .
    [Google Scholar]
  32. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, Bae DS. Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res. 2008; 14:9:25352542, doi: 10.1158/1078-0432.CCR-07-1231 .
    [Google Scholar]
  33. Pereira PM, Marques JP, Soares AR, Carreto L, Santos MA. MicroRNA expression variability in human cervical tissues. PLoS One. 2010; 5:7:e11780. doi: 10.1371/journal.pone.0011780 .
    [Google Scholar]
  34. Lui WO, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007; 67:13:60316043.
    [Google Scholar]
  35. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene. 2008; 27:18:25752582.
    [Google Scholar]
  36. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One. 2008; 3:7:e2557. doi: 10.1371/journal.pone.0002557 .
    [Google Scholar]
  37. Wong TS, Liu XB, Wong BY, Ng RW, Yuen AP, Wei WI. Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue. Clin Cancer Res. 2008; 14:9:25882592, doi: 10.1158/1078-0432.CCR-07-0666 .
    [Google Scholar]
  38. Chu Y, Zhu H, Lv L, Zhou Y, Huo J. MiRNA s in oesophageal squamous cancer. Neth J Med. 2013 Mar; 71:2:6975.
    [Google Scholar]
  39. Kano M, Seki N, Kikkawa N, Fujimura L, Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M, Matsubara H. miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer. 2010; 127:12:28042814, doi: 10.1002/ijc.25284 .
    [Google Scholar]
  40. Chang CC, Yang YJ, Li YJ, Chen ST, Lin BR, Wu TS, Lin SK, Kuo MY, Tan CT. MicroRNA-17/20a functions to inhibit cell migration and can be used a prognostic marker in oral squamous cell carcinoma. Oral Oncol. 2013; 49:9:923931.
    [Google Scholar]
  41. Gombos K, Horváth R, Szele E, Juhász K, Gocze K, Somlai K, Pajkos G, Ember I, Olasz L. miRNA expression profiles of oral squamous cell carcinomas. Anticancer Res. 2013; 33:4:15111517.
    [Google Scholar]
  42. Gao L, Ren W, Chang S, Guo B, Huang S, Li M, Guo Y, Li Z, Song T, Zhi K, Huang C. Downregulation of miR-145 expression in oral squamous cell carcinomas and its clinical significance. Onkologie. 2013; 36:4:194199, doi: 10.1159/000349956 .
    [Google Scholar]
  43. Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int. 2013; 13:1:51. doi: 10.1186/1475-2867-13-51 .
    [Google Scholar]
  44. Soga D, Yoshiba S, Shiogama S, Miyazaki H, Kondo S, Shintani S. microRNA expression profiles in oral squamous cell carcinoma. Oncol Rep. 2013; 30:2:579583, doi: 10.3892/or.2013.2488 .
    [Google Scholar]
  45. Siow M, Karen Ng L, Vincent Chong V, Jamaludin M, Abraham M, Abdul Rahman Z, Kallarakkal T, Yang YH, Cheong S, Zain R. Dysregulation of miR-31 and miR-375 expression is associated with clinical outcomes in oral carcinoma. Oral Dis. 2013;, doi: 10.1111/odi.12118. [Epub ahead of print].
    [Google Scholar]
  46. Nohata N, Hanazawa T, Kinoshita T, Inamine A, Kikkawa N, Itesako T, Yoshino H, Enokida H, Nakagawa M, Okamoto Y, Seki N. Tumour-suppressive microRNA-874 contributes to cell proliferation through targeting of histone deacetylase 1 in head and neck squamous cell carcinoma. Br J Cancer. 2013; 108:8:16481658, doi: 10.1038/bjc.2013.122 .
    [Google Scholar]
  47. Bertero T, Bourget-Ponzio I, Puissant A, Loubat A, Mari B, Meneguzzi G, Auberger P, Barbry P, Ponzio G, Rezzonico R. Tumor suppressor function of miR-483-3p on squamous cell carcinomas due to its pro-apoptotic properties. Cell Cycle. 2013; 12:14, [Epub ahead of print].
    [Google Scholar]
  48. Dziunycz P, Iotzova-Weiss G, Eloranta JJ, Läuchli S, Hafner J, French LE, Hofbauer GF. Squamous cell carcinoma of the skin shows a distinct microRNA profile modulated by UV radiation. J Invest Dermatol. 2010; 130:11:26862689.
    [Google Scholar]
  49. Bruegger C, Kempf W, Spoerri I, Arnold AW, Itin PH, Burger B. MicroRNA expression differs in cutaneous squamous cell carcinomas and healthy skin of immunocompetent individuals. Exp Dermatol. 2013; 22:6:426428, doi: 10.1111/exd.12153 .
    [Google Scholar]
  50. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007; 17:15:12981307.
    [Google Scholar]
  51. Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM. MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci U S A. 2008; 105:49:1930019305, doi:10.1073/pnas.0803992105 .
    [Google Scholar]
  52. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005; 120:5:635647.
    [Google Scholar]
  53. Zhou JY, Ma WL, Liang S, Zeng Y, Shi R, Yu HL, Xiao WW, Zheng WL. Analysis of microRNA expression profiles during the cell cycle in synchronized HeLa cells. BMB Rep. 2009; 42:9:593598.
    [Google Scholar]
  54. Shen Y, Wang P, Li Y, Ye F, Wang F, Wan X, Cheng X, Lu W, Xie X. miR-375 is upregulated in acquired paclitaxel resistance in cervical cancer. Br J Cancer. 2013; 109:1:9299, doi: 10.1038/bjc.2013.308 .
    [Google Scholar]
  55. Shiiba M, Shinozuka K, Saito K, Fushimi K, Kasamatsu A, Ogawara K, Uzawa K, Ito H, Takiguchi Y, Tanzawa H. MicroRNA-125b regulates proliferation and radioresistance of oral squamous cell carcinoma. Br J Cancer. 2013; 108:9:18171821, doi: 10.1038/bjc.2013.175 .
    [Google Scholar]
  56. Dai Y, Xie CH, Neis JP, Fan CY, Vural E, Spring PM. MicroRNA expression profiles of head and neck squamous cell carcinoma with docetaxel-induced multidrug resistance. Head Neck. 2011; 33:6:786791.
    [Google Scholar]
  57. Ratovitski EA. Phospho-ΔNp63α-dependent microRNAs modulate chemoresistance of squamous cell carcinoma cells to cisplatin: At the crossroads of cell life and death. FEBS Lett. 2013; 587:16:25362541, doi: 10.1016/j.febslet.2013.06.020. Epub 2013 Jul 2.
    [Google Scholar]
  58. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, Homer J, Corbridge R, Cox G, West CM, Ragoussis J, Harris AL. hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer. 2010; 116:9:21482158.
    [Google Scholar]
  59. Ayaz L, Görür A, Yaroğlu HY, Ozcan C, Tamer L. Differential expression of microRNAs in plasma of patients with laryngeal squamous cell carcinoma: potential early-detection markers for laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol. 2013; 139:9:14991506.
    [Google Scholar]
  60. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Hirajima S, Komatsu S, Ichikawa D, Takeshita H, Konishi H, Shiozaki A, Morimura R, Tsujiura M, Nagata H, Kawaguchi T, Arita T, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2013; 108:9:18221829, doi: 10.1038/bjc.2013.148 .
    [Google Scholar]
  61. Chen J, Yao D, Li Y, Chen H, He C, Ding N, Lu Y, Ou T, Zhao S, Li L, Long F. Serum microRNA expression levels can predict lymph node metastasis in patients with early-stage cervical squamous cell carcinoma. Int J Mol Med. 2013; 32:3:557567.
    [Google Scholar]
  62. Hirajima S, Komatsu S, Ichikawa D, Takeshita H, Konishi H, Shiozaki A, Morimura R, Tsujiura M, Nagata H, Kawaguchi T, Arita T, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Clinical impact of circulating miR-18a in plasma of patients with oesophageal squamous cell carcinoma. Br J Cancer. 2013; 108:9:18221829, doi: 10.1038/bjc.2013.148 .
    [Google Scholar]
  63. Takeshita N, Hoshino I, Mori M, Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, Komatsu A, Jitsukawa M, Matsubara H. Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer. 2013; 108:3:644652, doi: 10.1038/bjc.2013.8 .
    [Google Scholar]
  64. Lo AK, To KF, Lo KW, Lung RW, Hui JW, Liao G, Hayward SD. Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A. 2007; 104:41:1616416169.
    [Google Scholar]
  65. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer. 2007; 6::5.
    [Google Scholar]
  66. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X. MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett. 2009; 286:2:217222, doi: 10.1016/j.canlet.2009.05.030 .
    [Google Scholar]
  67. Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, Li J, Hasina R, Cheng C, Lingen MW, Gerstein MB, Weichselbaum RR, Xing HR, Lussier YA. Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol. 2010; 6:4:e1000730. doi: 10.1371/journal.pcbi.1000730 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jlghs.2014.1
Loading
/content/journals/10.5339/jlghs.2014.1
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error