1887
Volume 2015, Issue 1
  • ISSN: 2223-0440
  • EISSN:

Abstract

The ability to thermoregulate is a key component in allowing humans to live and work in a variety of torrid environments. A key thermoregulatory component is the role the skin plays in dissipating heat, through vasodilation of skin blood vessels and its critical role in the secretion of sweat. The role of sweating has for a long time been regarded primarily as the main function of the human eccrine sweat gland, although it has been known for a considerable length of time that sweat, produced in response to heat and exercise, was more than just a salt solution and contained a variety of other substances in addition to electrolytes. Recent studies have shown that there is more to the human eccrine gland, such as manufacturing and releasing compounds that contribute to the defensive barrier of the skin, as well as stem cells present in the gland, having a role to play re-epithelialization of the skin in response to wound healing. Disorders of sweat glands and the resultant conditions, most often relate to defects in the secretion of sweat and its release on to the skin surface. This review concentrates on the processes that enable the production of human sweat.

Loading

Article metrics loading...

/content/journals/10.5339/jlghs.2015.5
2015-12-09
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/jlghs/2015/1/jlghs.2015.5.html?itemId=/content/journals/10.5339/jlghs.2015.5&mimeType=html&fmt=ahah

References

  1. Quinton PM, Elder HY, McEwan Jenkinson D, et al., Structure and function of human sweat glands. In: Laden K, ed. Antiperspirants and Deodorants. New York, NY: Marcel Dekker Inc 1998;:1757.
    [Google Scholar]
  2. Peng Y, Cui X, Liu Y, Li Y, Liu J, Cheng B. Systematic review focusing on the excretion and protection roles of sweat in the skin. Dermatology. 2014; 228:2:115120.
    [Google Scholar]
  3. Rittié L, Sachs DL, Orringer JS, Voorhees JJ, Fisher GJ. Eccrine sweat glands are major contributors to reepithelialization of human wounds. Am J Pathol. 2013; 182:1:163171.
    [Google Scholar]
  4. Lu Catherine P, Polak L, Rocha AS, Pasolli HA, Chen SC, Sharma N, Blanpain C, Fuchs E. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell. 2012; 150:1:136150.
    [Google Scholar]
  5. Sato K, Kang WH, Saga K, Sato KT. Biology of sweat glands and their disorders. I. Normal sweat gland function. J Am Acad Dermatol. 1989; 20::537563.
    [Google Scholar]
  6. Sato K, Sato F. Sweat secretion by human axillary apoeccrine sweat gland in vitro. Am J Physiol. 1987; 252:1:R181R187.
    [Google Scholar]
  7. Wilke K, Wepf R, Keil FJ, Wittern KP, Wenck H, Biel SS. Are sweat glands an alternate penetration pathway? Understanding the morphological complexity of the axillary sweat gland apparatus. Skin Pharmacol Physiol. 2006; 19::3849.
    [Google Scholar]
  8. Bovell D, Corbett AD, Holmes S, Macdonald A, Harker M. The absence of apoeccrine glands in the human axilla has disease pathogenetic implications, including axillary hyperhidrosis. Br J Dermatol. 2007; 156:6:12781286.
    [Google Scholar]
  9. Sato K, Sato F. Individual variations in structure and function of human eccrine sweat gland. Am J Physiol. 1983; 245:2:R203R208.
    [Google Scholar]
  10. Montgomery I, Jenkinson DM, Elder HY, Czarnecki D, MacKie RM. The effects of thermal stimulation on the ultrastructure of the human atrichial sweat gland. 1. The fundus. Br J Dermatol. 1984; 110::385397.
    [Google Scholar]
  11. Montgomery I, Jenkinson DM, Elder HY, Czarnecki D, MacKie RM. The effects of thermal stimulation on the ultrastructure of the human atrichial sweat gland. II. The duct. Br J Dermatol. 1985; 112:2:165177.
    [Google Scholar]
  12. Hibbs R. The fine structure of human eccrine sweat glands. Am J Anat. 1958; 103:2:201217.
    [Google Scholar]
  13. Hashimoto K. The eccrine gland. In: Jarrret A, ed. The Physiology and Pathophysiology of the Skin. London: Academic Press Ltd 1978.
    [Google Scholar]
  14. Sato K, Nishiyama A, Kobayashi M. Mechanical properties and functions of the myoepithelium in the eccrine sweat gland. Am J Physiol. 1979; 237:3:C177C184.
    [Google Scholar]
  15. Langbein L, Rogers MA, Praetzel S, Cribier B, Peltre B, Gassler N, Schweizer J. Characterization of a Novel Human Type II Epithelial Keratin K1b, specifically expressed in eccrine sweat glands. J Investig Dermatol. 2005; 125:3:428444.
    [Google Scholar]
  16. Lu C, Fuchs E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb Perspect Med. 2014; 4:2.
    [Google Scholar]
  17. Dobson R, Slegers J. The effect of aldosterone on sweating in the cat. J Invest Dermatol. 1971; 56:4:337339.
    [Google Scholar]
  18. Arai K, Chrousos G. Aldosterone Deficiency and Resistance. In: De Groot LBeck-Peccoz PChrousos GDungan KGrossman AHershman JMKoch CMcLachlan RNew MRebar RSinger FVinik AWeickert MO, eds. South Dartmouth: MDText.com Inc 2013.
  19. Sato K, Sato F. Effect of VIP on sweat secretion and cAMP accumulation in isolated simian eccrine glands. Am J Physiol Regul Integr Comp Physiol. 1987; 253:6:R935R941.
    [Google Scholar]
  20. Bovell DL, Clunes MT, Elder HY, Wong CH, Ko WH. Nucleotide-evoked ion transport and [Ca2+]i changes in normal and hyperhidrotic human sweat gland cells. Eur J Pharmacol. 2000; 403:1–2:4548.
    [Google Scholar]
  21. Wilson S, Whiteford ML, Bovell DL, Pediani JD, Ko WH, Smith GL, Lee CM, Elder HY. The regulation of membrane 125I- and 86Rb+ permeability in a virally transformed cell line (NCL-SG3) derived from the human sweat gland epithelium. Exp Physiol. 1994; 79:3:445459.
    [Google Scholar]
  22. Ring A, Mork A. Electrophysiological responses to oxytocin and ATP in monolayers of a human sweat gland cell line. Biochem Biophys Res Commun. 1997; 234::3034.
    [Google Scholar]
  23. Muchekehu RW, Harvey BJ. 17β-estradiol rapidly mobilizes intracellular calcium from ryanodine-receptor-gated stores via a PKC–PKA–Erk-dependent pathway in the human eccrine sweat gland cell line NCL-SG3. Cell Calcium. 2008; 44:3:276288.
    [Google Scholar]
  24. Bovell DL, Holub BS, Odusanwo O, Brodowicz B, Rauch I, Kofler B, Lang R. Galanin is a modulator of eccrine sweat gland secretion. Exp Dermatol. 2013; 22:2:141143.
    [Google Scholar]
  25. Bovell DL, Santic R, Kofler B, Hermann A, Wilson D, Corbett A, Lang R. Activation of chloride secretion via proteinase-activated receptor 2 in a human eccrine sweat gland cell line – NCL-SG3. Exp Dermatol. 2008; 17:6:505511.
    [Google Scholar]
  26. Sato K, Sato F. Cholinergic potentiation of isoproterenol-induced cAMP level in sweat gland. Am J Physiol. 1983; 245:3:C189C195.
    [Google Scholar]
  27. Quinton P, Tormey J. Localisation of Na/KATPase sites in the secretory coil and reabsorptive epithelia of perfused eccrine sweat glands. J Membr Biol. 1976; 29::383399.
    [Google Scholar]
  28. Sato K, Taylor J, Dobson R. The effect of oubain on eccrine sweat gland function. J Invest Dermatol. 1969; 53:4:275282.
    [Google Scholar]
  29. Sato F, Sato K. Effect of periglandular ionic composition and transport inhibitors on rhesus monkey eccrine sweat gland function in vitro. J Physiol. 1987; 393:1:195212.
    [Google Scholar]
  30. Toyomoto T, Knutsen D, Soos G, Sato K. Na-K-2Cl cotransporters are present and regulated in simian eccrine clear cells. Am J Physiol. 1997; 273:1:R270R277.
    [Google Scholar]
  31. Bovell DL, MacDonald A, Meyer BA, Corbett AD, MacLaren WM, Holmes SL, Harker M. The secretory clear cell of the eccrine sweat gland as the probable source of excess sweat production in hyperhidrosis. Exp Dermatol. 2011; 20:12:10171020.
    [Google Scholar]
  32. Berridge MJ. Inositol trisphosphate and diacylglycerol: Two interacting second messengers. Annu Rev Biochem. 1987; 56::159193.
    [Google Scholar]
  33. Berridge MJ, Irvine RF. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984; 312:5992:315321.
    [Google Scholar]
  34. Vervloessem T, Yule DI, Bultynck G, Parys JB. The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca2+-release channel. Biochim Biophys Acta. 2015; 1853:9:19922005.
    [Google Scholar]
  35. Bovell DL, Elder HY, Jenkinson DM, Wilson SM. The control of potasium (86Rb+) efflux in the isolated huamn sweat gland. Q J Exp Physiol. 1989; 74:3:267276.
    [Google Scholar]
  36. Saga K, Sato F, Sato K. K+ efflux from the monkey eccrine secretory coil during the transient of stimulation with agonists. J Physiol. 1988; 405:1:205217.
    [Google Scholar]
  37. Reddy M, Bell C, Quinton P. Evidence of two distinct epithelial cell types in primary cultures from human sweat gland secretory coil. Am J Physiol. 1992; 262::C891C898.
    [Google Scholar]
  38. Huang F, Wong X, Jan LY. International union of basic and clinical pharmacology. LXXXV: Calcium-activated chloride channels. Pharmacol Rev. 2012; 64:1:115.
    [Google Scholar]
  39. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science. 2008; 322:5901:590594.
    [Google Scholar]
  40. Pedemonte N, Galietta LJV. Structure and function of TMEM16 proteins (anoctamins). 2014; 94::419459.
    [Google Scholar]
  41. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci U S A. 2002; 99:6:40084013.
    [Google Scholar]
  42. Cui C-Y, Childress V, Piao Y, Michel M, Johnson AA, Kunisada M, Ko MS, Kaestner KH, Marmorstein AD, Schlessinger D. Forkhead transcription factor FoxA1 regulates sweat secretion through Bestrophin 2 anion channel and Na-K-Cl cotransporter 1. Proc Natl Acad Sci U S A. 2012; 109:4:11991203.
    [Google Scholar]
  43. Ertongur-Fauth T, Hochheimer A, Buescher JM, Rapprich S, Krohn M. A novel TMEM16A splice variant lacking the dimerization domain contributes to calcium-activated chloride secretion in human sweat gland epithelial cells. Exp Dermatol. 2014; 23:11:825831.
    [Google Scholar]
  44. Kunzelmann K, Kongsuphol P, Chootip K, Toledo C, Martins JR, Almaca J, Tian Y, Witzgall R, Ousingsawat J, Schreiber R. Role of the Ca2+-activated Cl- channels bestrophin and anoctamin in epithelial cells. Biol Chem. 2011; 392:1:125134.
    [Google Scholar]
  45. Verkman A, van Hoek AN, Ma T, Frigeri A, Skach WR, Mitra A, Tamarappoo BK, Farinas J. Water transport across mammalian cell membranes. Am J Physiol. 1996; 270:1:C12C30.
    [Google Scholar]
  46. Agre P, Sasaki S, Chrispeels M. Aquaporins: A family of water channel proteins. Am J Physiol. 1993; 265:3:F461.
    [Google Scholar]
  47. Nejsum LN, Kwon TH, Jensen UB, Fumagalli O, Frøkiaer J, Krane CM, Menon AG, King LS, Agre PC, Nielsen S. Functional requirement of aquaporin-5 in plasma membranes of sweat glands. Proc Natl Acad Sci U S A. 2002; 99:1:511516.
    [Google Scholar]
  48. Briggman J, Tashian R, Spicer S. Immunohistochemical localization of carbonic anhydrase I and II in eccrine sweat glands from control subjects and patients with cystic fibrosis. Am J Pathol. 1983; 112:3:250257.
    [Google Scholar]
  49. Inoue R, Sohara E, Rai T, Satoh T, Yokozeki H, Sasaki S, Uchida S. Immunolocalization and translocation of aquaporin-5 water channel in sweat glands. J Dermatol Sci. 2013; 70:1:2633.
    [Google Scholar]
  50. Fukuda M, Nakanishi Y, Fuse M, Yokoi N, Hamada Y, Fukagawa M, Negi A, Nakamura M. Altered expression of aquaporins 1 and 4 coincides with neurodegenerative events in retinas of spontaneously diabetic Torii rats. Exp Eye Res. 2010; 90:1:1725.
    [Google Scholar]
  51. Gerhardinger C, Costa MB, Coulombe MC, Toth I, Hoehn T, Grosu P. Expression of acute-phase response proteins in retinal Muller cells in diabetes. Invest Ophthalmol Vis Sci. 2010; 9046::349357.
    [Google Scholar]
  52. Iandiev I, Pannicke T, Reichenbach A, Wiedemann P, Bringmann A. Diabetes alters the localization of glial aquaporins in rat retina. Neurosci. Lett. 2007; 421::132136.
    [Google Scholar]
  53. Clunes MT, Lindsay SL, Roussa E, Quinton PM, Bovell DL. Localisation of the vacuolar proton pump (V-H+-ATPase) and carbonic anhydrase II in the human eccrine sweat gland. J Mol Histol. 2004; 35:4:339345.
    [Google Scholar]
  54. Wilson S, Bovell DL, Elder HY, Jenkinson DM, Pediani JD. The effects of removing external sodium upon the control of potassium (86Rb+) permeability in the isolated human sweat gland. Exp Physiol. 1990; 75:5:649656.
    [Google Scholar]
  55. Ambudkar IS. Ca2+ signaling and regulation of fluid secretion in salivary gland acinar cells. Cell Calcium. 2014; 55:6:297305.
    [Google Scholar]
  56. Messenger SW, Falkowski MA, Groblewski GE. Ca2+-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium. 2014; 55:6:369375.
    [Google Scholar]
  57. Petersen O. Calcium signalling and secretory epithelia. Cell Calcium. 2014; 55:6:282289.
    [Google Scholar]
  58. Putney JW, Bird GS. Calcium signaling in lacrimal glands. Cell Calcium. 2014; 55:6:290296.
    [Google Scholar]
  59. Ambudkar I. Dissection of calcium signaling events in exocrine secretion. Neurochem Res. 2011; 36:7:12121221.
    [Google Scholar]
  60. Sato K, Sato F. Role of calcium in cholinergic and adrenergic mechanisms of eccrine sweat secretion. Am J Physiol Cell Physiol. 1981; 241:3:C113C120.
    [Google Scholar]
  61. Sato K, Sato F. Pharmacologic responsiveness of isolated single eccrine sweat glands. Am J Physiol. 1981; 240:1:R44R51.
    [Google Scholar]
  62. Sato K, Sato F. Cyclic AMP accumulation in the beta adrenergic mechanism of eccrine sweat secretion. Pflugers Arch. 1981; 390:1:4953.
    [Google Scholar]
  63. Bijman J, Quinton P. Influence of calcium and cyclic nucleotides on beta-adrenergic sweat secretion in equine sweat glands. Am J Physiol Cell Physiol. 1984; 247:1:C10C13.
    [Google Scholar]
  64. Metzler-Wilson K, Sammons DL, Ossim MA, Metzger NR, Jurovcik AJ, Krause BA, Wilson TE. Extracellular calcium chelation and attenuation of calcium entry decrease in vivo cholinergic-induced eccrine sweating sensitivity in humans. Exp Physiol. 2014; 99:2:393402.
    [Google Scholar]
  65. Putney J. A model for receptor-regulated calcium entry. Cell Calcium. 1986; 7::112.
    [Google Scholar]
  66. Putney J. Capacitative calcium entry revisited. Cell Calcium. 1990; 11::611624.
    [Google Scholar]
  67. Berridge M, Bootman M, Roderick H. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003; 4:7:517529.
    [Google Scholar]
  68. Putney JW. Capacitative calcium entry: Sensing the calcium stores. J Cell Biol. 2005; 169:3:381382.
    [Google Scholar]
  69. Parekh AB, Putney JW. Store-operated calcium channels. Physiol Rev. 2005; 85:2:757810.
    [Google Scholar]
  70. Bovell D, Riggs CM, Sidlow G, Troester S, MacLaren W, Yip W, Ko WH. Evidence of purinergic neurotransmission in isolated, intact horse sweat glands. Vet Dermatol. 2013; 24:4:398403.
    [Google Scholar]
  71. Putney JW. Physiological mechanisms of TRPC activation. Pflugers Arch. 2005; 451:1:2934.
    [Google Scholar]
  72. Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev. 2005; 85:2:757810.
    [Google Scholar]
  73. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr. Emerging perspectives in store-operated Ca2+ entry: Roles of Orai, Stim and TRP. Biochim Biophys Acta. 2006; 1763:11:11471160.
    [Google Scholar]
  74. DeHaven WI, Smyth JT, Boyles RR, Putney JW Jr. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J Biol Chem. 2007; 282:24:1754817556.
    [Google Scholar]
  75. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A. Biochemical and functional characterization of Orai proteins. J Biol Chem. 2007; 282:22:1623216243.
    [Google Scholar]
  76. Lewis RS. The molecular choreography of a store-operated calcium channel. Nature. 2007; 446:7133:284287.
    [Google Scholar]
  77. Luik RM, Lewis RS. New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol Med. 2007; 13:3:103107.
    [Google Scholar]
  78. Schindl R, Muik M, Fahrner M, Derler I, Fritsch R, Bergsmann J, Romanin C. Recent progress on STIM1 domains controlling Orai activation. Cell Calcium. 2009; 46:4:227232.
    [Google Scholar]
  79. Choi S, et al., The TRPCs–STIM1–Orai interaction. In: Nilius BFlockerzi V, eds. Mammalian Transient Receptor Potential (TRP) Cation Channels. Springer International Publishing 2014;:10351054.
    [Google Scholar]
  80. Liao Y, Plummer NW, George MD, Abramowitz J, Zhu MX, Birnbaumer L. A role for Orai in TRPC-mediated Ca2+ entry suggests that a TRPC: Orai complex may mediate store and receptor operated Ca2+ entry. Proc Natl Acad Sci U S A. 2009; 106:9:32023206.
    [Google Scholar]
  81. Lee KP, Yuan JP, So I, Worley PF, Muallem S. STIM1-dependent and STIM1-independent function of Transient Receptor Potential Canonical (TRPC) channels tunes their store-operated mode. J Biol Chem. 2010; 285:49:3866638673.
    [Google Scholar]
  82. Robertson J, Bovell D. Pharmacological blockers of STIM1 inhibit increases in intracellular calcium in horse sweat gland cells. FASEB J. 2014; 28::650.
    [Google Scholar]
  83. Putney JW, Weiss SJ, Leslie BA, Marier SH. Is calcium the final mediator of exocytosis in the rat parotid gland? J Pharmacol Exp Ther. 1977; 203:1:144155.
    [Google Scholar]
  84. Robertshaw D, Taylor CR, Mazzia LM. Sweating in primates: Secretion by adrenal medulla during exercise. Am J Physiol. 1973; 224:3:678681.
    [Google Scholar]
  85. Pon D, Wong M, Riordan JR, Schimmer BP. cAMP-binding proteins in epithelial cells cultured from human sweat glands. Am J Physiol. 1990; 258:6:C1036C1043.
    [Google Scholar]
  86. Reddy M, Quinton P. cAMP activation of CF-affected Cl- conductance in both cell membranes of an absorptive epithelium. J Membr Biol. 1992; 130:1:4962.
    [Google Scholar]
  87. Sato F, Sato K. cAMP-dependent Cl- Channel Protein (CFTR) and its mRNA are expressed in the secretory portion of human eccrine sweat gland. J Histochem Cytochem. 2000; 48:3:345353.
    [Google Scholar]
  88. Ahuja M, Jha A, Maléth J, Park S, Muallem S. cAMP and Ca2+ signaling in secretory epithelia: Crosstalk and synergism. Cell Calcium. 2014; 55:6:385393.
    [Google Scholar]
  89. Putney J. On the role of cellular calcium in the response of the parotid to dibutyryl and monobutyryl cyclic AMP. Life Sci. 1978; 22:8:631638.
    [Google Scholar]
  90. Putney J. Biphasic modulation of potassium release in rat parotid gland by carbachol and phenylephrine. J Pharmacol Exp Ther. 1976; 198:2:375384.
    [Google Scholar]
  91. Reddy MM, Light MJ, Quinton PM. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl- channel function. Nature. 1999; 402:6759:301304.
    [Google Scholar]
  92. Reddy M, Quinton P. Rapid regulation of electrolyte absorption in sweat duct. J Membr Biol. 1994; 140:1:5767.
    [Google Scholar]
  93. Reddy M, Quinton P. Functional interaction of CFTR and ENaC in sweat glands. Pflugers Arch. 2003; 445::499503.
    [Google Scholar]
  94. Reddy M, Quinton P. Intracellular Cl activity: Evidence of dual mechanisms of cl absorption in sweat duct. Am J Physiol. 1994; 267:4:C1136C1144.
    [Google Scholar]
  95. Quinton P, Reddy M. Cl-conductance and acid secretion in the human sweat duct. In: Durham JHardy M, eds. Bicarbonate, Chloride, and Proton Transport Systems. New York, NY: NYAS Proceedings 1989;:438446.
    [Google Scholar]
  96. Bovell D, Quinton P. The immunocytochemical localisation of anion exchangers (AE) in the reabsorptive duct of the human eccrine sweat gland. J Physiol. 2002; 544P::107P.
    [Google Scholar]
  97. Bovell D, Clunes MT, Roussa E, Burry J, Elder HY. Vacuolar-type H+-ATPase distribution in unstimulated and acetylcholine-activated isolated human eccrine sweat glands. Histochem J. 2000; 32::409413.
    [Google Scholar]
  98. Granger D, Marsolais M, Burry J, Laprade RV-typeH+-ATP. Pase in the human eccrine sweat duct: Immunolocalization and functional demonstration. Am J Physiol Cell Physiol. 2002; 282:6:C1454C1460.
    [Google Scholar]
  99. Beck JS, Coulson HF, Dove N, Kealey T. Evidence for Sodium-coupled acid-base transport across the basolateral membrane of the reabsorptive duct of the human eccrine sweat gland. J Investig Dermatol. 2001; 117:4:877879.
    [Google Scholar]
  100. Granger D, Marsolais M, Burry J, Laprade R. Na+/H+ exchangers in the human eccrine sweat duct. Am J Physiol Cell Physiol. 2003; 285:5:C1047C1058.
    [Google Scholar]
  101. Bijman J, Quinton P. Influence of abnormal Cl- impermeability on sweating in cystic fibrosis. Am J Physiol Cell Physiol. 1984; 247:1:C3C9.
    [Google Scholar]
  102. Baker L, Stofan JR, Hamilton AA, Horswill CA. Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. J Appl Physiol. 2009; 107:3:887895.
    [Google Scholar]
  103. Patterson MJ, Galloway SDR, Nimmo MA. Effect of induced metabolic alkalosis on sweat composition in men. Acta Physiologica Scandinavica. 2002; 174:1:4146.
    [Google Scholar]
  104. Okada T, Konishi H, Ito M, Nagura H, Asai J. Identification of secretory immunoglobulin a in human sweat and sweat glands. J Invest Dermatol. 1988; 90:5:648651.
    [Google Scholar]
  105. Sato K, Sato F. Interleukin-1 alpha in human sweat is functionally active and derived from the eccrine sweat gland. Am J Physiol. 1994; 266:3:R950R959.
    [Google Scholar]
  106. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C. Dermcidin: A novel human antibiotic peptide secreted by sweat glands. Nat Immunol. 2001 Dec; 2:12:11331137.
    [Google Scholar]
  107. Rieg S, Garbe C, Sauer B, Kalbacher H, Schittek B. Dermcidin is constitutively produced by eccrine sweat glands and is not induced in epidermal cells under inflammatory skin conditions. Br J Dermatol. 2004; 151:3:534539.
    [Google Scholar]
  108. Rieg S, Seeber S, Steffen H, Humeny A, Kalbacher H, Stevanovic S, Kimura A, Garbe C, Schittek B. Generation of multiple stable dermcidin-derived antimicrobial peptides in sweat of different body sites. J Invest Dermatol. 2005; 126:2:354365.
    [Google Scholar]
  109. Rieg S, Steffen H, Seeber S, Humeny A, Kalbacher H, Dietz K, Garbe C, Schittek B. Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in Vivo. J Immunol. 2005; 174:12:80038010.
    [Google Scholar]
  110. Murakami M, Lopez-Garcia B, Braff M, Dorschner RA, Gallo RL. Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol. 2004; 172:5:30703077.
    [Google Scholar]
  111. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL. Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol. 2002; 119:5:10901095.
    [Google Scholar]
  112. Park J-H, Park GT, Cho IH, Sim SM, Yang JM, Lee DY. An antimicrobial protein, lactoferrin exists in the sweat: Proteomic analysis of sweat. Exp Dermatol. 2011; 20:4:369371.
    [Google Scholar]
  113. Strutton DR, Kowalski JW, Glaser DA, Stang PE. US prevalence of hyperhidrosis and impact on individuals with axillary hyperhidrosis: Results from a national survey. J Am Acad Dermatol. 2004; 51:2:241248.
    [Google Scholar]
  114. Lindsay S, et al., Aquaporin-5 in normal and hyperhidrotic human eccrine glands. British Journal of Surgery. 2005; 92:S1:129131.
    [Google Scholar]
  115. Lindsay S. Stimulus-secretion Coupling in Normal and Abnormal Human Sweat Glands, in Dept of Biological and Biomedical Sciences. Glasgow: Glasgow Caledonian University 2004.
    [Google Scholar]
  116. Davis FM, Janoshazi A, Janardhan KS, Steinckwich N, D'Agostin DM, Petranka JG, Desai PN, Roberts-Thomson SJ, Bird GS, Tucker DK, Fenton SE, Feske S, Monteith GR, Putney JW Jr. Essential role of Orai1 store-operated calcium channels in lactation. Proc Natl Acad Sci U S A. 2015; 112:18:58275832.
    [Google Scholar]
  117. Yang J, Lim Y. Prevalence of anhidrosis in thoroughbred racehorses in Korea. J Anim Sci Technol. 2011; 53:6:571573.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jlghs.2015.5
Loading
/content/journals/10.5339/jlghs.2015.5
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error