1887
Volume 2025, Issue 2
  • EISSN: 2616-4930

Abstract

The management of crowds during the Hajj and Umrah pilgrimages is a multifaceted challenge due to the massive influx of pilgrims to sacred sites in Makkah and Madinah, Saudi Arabia. With millions of pilgrims visiting these sacred sites, Saudi Arabia has adopted a variety of smart solutions to ensure safety, efficiency, and comfort. Radiofrequency identification is central to these efforts, enabling real-time tracking and access to personal data for security and service delivery. The integration of Internet of Things devices and the Global Positioning System allows for continuous monitoring, emergency response, and smooth navigation. Surveillance systems enhanced with computer vision and convolutional neural networks enable real-time video analysis, early congestion detection, and facial recognition. Big data analytics processes multisource data to optimize crowd flow and transportation. Artificial intelligence–driven smartphone applications and social media platforms support communication and multilingual engagement. Wearable technologies like Hajj Bracelets track health status and trigger emergency alerts. Collectively, these innovations significantly improve crowd control, safety, and the overall pilgrimage experience. Furthermore, technologies have broader implications for global crowd management in other large-scale events. The successful application of AI, the Internet of Things, and real-time systems marks a paradigm shift in managing large gatherings, aligning with the broader vision of smart and secure public event planning.

Loading

Article metrics loading...

/content/journals/10.5339/jist.2025.12
2025-07-07
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/jist/2025/2/jist.2025.issue2.12.html?itemId=/content/journals/10.5339/jist.2025.12&mimeType=html&fmt=ahah

References

  1. Abalkhail, A. A. A., & Al Amri, S. M. A. (2022). Saudi Arabia’s management of the Hajj season through artificial intelligence and sustainability. Sustainability (Switzerland), 14:(21), 1–19. https://doi.org/10.3390/su142114142
    [Google Scholar]
  2. Abdelgawad, H., Shalaby, A., Abdulhai, B., & Gutub, A. A.-A. (2014). Microscopic modeling of large-scale pedestrian-vehicle conflicts in the city of Madinah, Saudi Arabia. Journal of Advanced Transportation, 48:(6), 507–525. https://doi.org/10.1002/atr.1201
    [Google Scholar]
  3. Adnan, E. A. A. A., & Khozium,M. (2012). Real-time crowd monitoring using infrared thermal video sequences. Journal of American Science, 8:(3), 133–140.
    [Google Scholar]
  4. Afif, M., Ayachi, R., Said, Y., & Atri, M. (2020). Deep learning-based application for indoor scene recognition. Neural Processing Letters, 51:(3), 2827–2837. https://doi.org/10.1007/s11063-020-10231-w
    [Google Scholar]
  5. Afzal, S., Fatima, M., Khalid, K., Abbas, P., Durrani, A., & Zaheer, M. A. (2018). Internet of things: Its environmental applications and challenges. Environmental Contaminants Reviews, 1:(2), 1–3. https://doi.org/10.26480/ecr.02.2018.01.03
    [Google Scholar]
  6. Ahmad, A. (2017). Complex network modelling and analysis of Hajj crowd and MERS-CoV outbreak [PhD dissertation, Department of Computer Science, Kulliyah of Information and Communication Technology, International Islamic University Malaysia].
  7. Albattah, W., Habib, S., Islam, M., Khan, S., & Abdul Kadir, K. (2021). Hajj crowd management using CNN-based approach. Computers, Materials & Continua, 66:(2), 2183–2197. https://doi.org/10.32604/cmc.2020.014227
    [Google Scholar]
  8. Alharbey, R., Banjar, A., Said, Y., Atri, M., Alshdadi, A., & Abid, M. (2022). Human faces detection and tracking for crowd management in Hajj and Umrah. Computers, Materials & Continua, 71:(3), 6275–6291. https://doi.org/10.32604/cmc.2022.024272
    [Google Scholar]
  9. Ali, S. G., & Al-Masud, S. M. R. (2018). Routing optimization in WBAN using bees algorithm for overcrowded Hajj environment. International Journal of Advanced Computer Science and Applications, 9:(5), 2018. http://dx.doi.org/10.14569/IJACSA.2018.090510
    [Google Scholar]
  10. Almutairi, M. M., Yamin, M., Halikias, G., & Abi Sen, A. A. (2021). A framework for crowd management during COVID-19 with artificial intelligence. Sustainability, 14:(1), 303. https://doi.org/10.3390/su14010303
    [Google Scholar]
  11. AlQurashi, T., & Altman, R. (2019). Multi-level multi-stage agent-based simulation model of crowd dynamics in last floor of Al-Haram Al-Sharif. In 19th Scientific Forum for the Research of Hajj, Umrah and Madinah Visit.
    [Google Scholar]
  12. Al-Sheary, A., & Almagbile, A. (2017). Crowd monitoring system using unmanned aerial vehicle (UAV). Journal of Civil Engineering and Architecture, 11:(11), 1014–1024. https://doi.org/10.17265/1934-7359/2017.11.004
    [Google Scholar]
  13. Ayachi, R., Afif, M., Said, Y., & Atri, M. (2020). Traffic signs detection for real-world application of an advanced driving assisting system using deep learning. Neural Processing Letters, 51:(1), 837–851. https://doi.org/10.1007/s11063-019-10115-8
    [Google Scholar]
  14. Ayachi, R., Said, Y., & Atri, M. (2021). A convolutional neural network to perform object detection and identification in visual large-scale data. Big Data, 9:(1), 41–52. https://doi.org/10.1089/big.2019.0093
    [Google Scholar]
  15. Ayachi, R., Said, Y., & Ben Abdelaali, A. (2020). Pedestrian detection based on light-weighted separable convolution for advanced driver assistance systems. Neural Processing Letters, 52:(3), 2655–2668. https://doi.org/10.1007/s11063-020-10367-9
    [Google Scholar]
  16. Bhuiyan, M. R., Naser, S., & Rahman, S. (2022). Crowd density estimation using deep learning for Hajj pilgrimage video analytics. F1000Research, 10:, 1190.https://doi.org/10.12688/f1000research.73156.2
    [Google Scholar]
  17. Chan, A. B., Vasconcelos, N. (2012). Counting people with low-level features and Bayesian regression. IEEE Transactions on Image Processing, 21:(4), 2160–2177. https://doi.org/10.1109/TIP.2011.2172800
    [Google Scholar]
  18. Chen, K., Gong, S., & Xiang, T. (2012). Feature mining for localised crowd counting. In R. Bowden, J. Collomosse, & K. Mikolajczyk (Eds.), Proceedings of the British Machine Vision Conference (BMVC). BMVA Press. https://doi.org/10.5244/C.26.21
    [Google Scholar]
  19. Curtis, S., Zafar, B., Gutub, A., & Manocha, D. (2013). Right of way. The Visual Computer, 29:(12), 1277–1292. https://doi.org/10.1007/s00371-012-0769-x
    [Google Scholar]
  20. Dridi, M. H. (2015). Tracking individual targets in high density crowd scenes: Analysis of a video recording in Hajj. Current Urban Studies, 3:, 35–53. https://doi.org/10.4236/cus.2015.31005
    [Google Scholar]
  21. Eldursi, G. A. S., Alamoudi, N., Haron, F., & Aljarbua, F. (2017). Crowd density estimation system for Al-Masjid Al-Haram. International Journal of Computer Communication and Instrumentation, 4:(1), 60–63. https://doi.org/10.15242/IJCCIE.IAE1216012
    [Google Scholar]
  22. Enzweiler, M., & Gavrila, D. M. (2009). Monocular pedestrian detection: Survey and experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31:(12), 2179–2195. https://doi.org/10.1109/TPAMI.2008.260
    [Google Scholar]
  23. Felemban, A., Qahtani, K., Hawsawi, A., & Shahri, E. (2017). Crowd simulation model for crowd movement in the holy mosque. In 17th Scientific Symposium for Hajj, Umrah & Madinah Visit (pp.727–737).
    [Google Scholar]
  24. Felemban, E. A., Rehman, F. U., Biabani, S. A. A., Ahmad, A., Naseer, A., Majid, A. R. M. A., Hussain,O. K., Qamar, A. M., Falemban, R., & Zanjir, F. (2020). Digital revolution for Hajj crowd management: A technology survey. IEEE Access, 8:, 208583–208609. https://doi.org/10.1109/ACCESS.2020.3037396
    [Google Scholar]
  25. Fu, M., Xu, P., Li, X., Liu, Q., Ye, M., & Zhu, C. (2015). Fast crowd density estimation with convolutional neural networks. Engineering Applications of Artificial Intelligence, 43:, 81–88. https://doi.org/10.1016/j.engappai.2015.04.006
    [Google Scholar]
  26. Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, (pp. 1440–1448). https://doi.org/10.1109/ICCV.2015.169
    [Google Scholar]
  27. Helbing, D., & Molnár, P. (1995). Social force model for pedestrian dynamics. Physical Review E, 51:(5), 4282–4286. https://doi.org/10.1103/PhysRevE.51.4282
    [Google Scholar]
  28. IBM. (n.d.). What is internet of things? IBM. Retrieved from https://www.ibm.com/internet-of-things
  29. Idrees, H., Saleemi, I., Seibert, C., & Shah, M. (2013). Multi-source multi-scale counting in extremely dense crowd images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2547–2554). https://doi.org/10.1109/CVPR.2013.329
    [Google Scholar]
  30. Jin, L., Fang, M., Chen, S., Lei, W., & Chen, Y. (2020). Tangential change behavior and pedestrian simulation of multichannel evacuation crowd. Mathematical Problems in Engineering, 2020:, 1–13. https://doi.org/10.1155/2020/7649094
    [Google Scholar]
  31. Kaysi, I., Alshalalfah, B., Shalaby, A., Sayegh, A., Sayour, M., & Gutub, A. (2013). Users’ evaluation of rail systems in mass events. Transportation Research Record: Journal of the Transportation Research Board, 2350:(1), 111–118. https://doi.org/10.3141/2350-13
    [Google Scholar]
  32. Kim, M., Guy, S., Hillesland, K., Zafar, B., Gutub, A., & Manocha, D. (2015). Velocity-based modeling of physical interactions in dense crowds. The Visual Computer, 31:, 541–555. https://doi.org/10.1007/s00371-014-0946-1
    [Google Scholar]
  33. Kingdom of Saudi Arabia. (2023). The Unified National Platform: Hajj and Umrah. GOV.SA. Retrieved June 15, 2025, from https://my.gov.sa/en
    [Google Scholar]
  34. Koshak, N. (2008). Analyzing pedestrian movement in Mataf using GPS and GIS to support space redesign. In Proceedings of the 9th International Conference on Design and Decision Support Systems in Architecture and Urban Planning (DDSS 2008), July 7–10, 2008, The Netherlands (pp. 1–14).
  35. Kubler, C., Robert, S., Hefnawy, J., Främling, A., Cherifi, K., & Bouras, A. (2017). Open IoT ecosystem for sporting event management. IEEE Access, 5:, 7064–7079. https://doi.org/10.1109/ACCESS.2017.2692247
    [Google Scholar]
  36. Lamba, S., & Nain, N. (2017). Crowd monitoring and classification: A survey. In S. K. Bhatia, K. K. Mishra, S. Tiwari, & V. Kumar Singh (Eds.), Progress in computing, analytics and networking (pp. 21–31). Springer. https://doi.org/10.1007/978-981-10-3770-2_3
  37. Li, H., & Zhang, Z. M. (2012). Learning to recognize objects in images. Trends in Cognitive Sciences, 3:(1), 22–31. https://doi.org/10.1016/S1364-6613(98)01261-3
    [Google Scholar]
  38. Lipka, M. (2017). Why Muslims are the world’s fastest-growing religious group. Pew Research Center. https://www.pewresearch.org/fact-tank/2017/04/06/why-muslimsare-the-worlds-fastest-growing-religious-group/
    [Google Scholar]
  39. Liu, B., & Vasconcelos, N. (2015). Bayesian model adaptation for crowd counts. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) (pp. 4175–4183). IEEE. https://doi.org/10.1109/ICCV.2015.475
  40. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox detector. In Leibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.), Computer Vision – ECCV 2016 (pp. 21–37). Springer. https://doi.org/10.1007/978-3-319-46448-0_2
  41. Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234:, 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
    [Google Scholar]
  42. Majid, A. R. M. A., Hamid, N. A. W. A., Rahiman, A. R., & Zafar, B. (2018). GPUbased optimization of pilgrim simulation for Hajj and Umrah rituals. Pertanika Journal of Science and Technology, 26:(3), 1019–1038.
    [Google Scholar]
  43. Mohamed, S. A. E., & Parvez, M. T. (2019). Crowd modeling based auto activated barriers for management of pilgrims in Mataf. In IEEE International Conference on Innovative Trends in Computer Engineering (ITCE) (pp. 260–365). IEEE. https://doi.org/10.1109/ITCE.2019.8646529
    [Google Scholar]
  44. Mohandes, M. (2008). An RFID-based pilgrim identification system (a pilot study). In Proceedings of the 11th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM 2008). IEEE. https://doi.org/10.1109/OPTIM.2008.4602508
    [Google Scholar]
  45. Mohandes, M., Haleem, M. A., & Abul-Hussain, A. (2011). Pilgrims tracking using wireless sensor network. Proceedings of the IEEE Workshops International Conference on Advanced Information Networking and Applications. Biopolis, Singapore. 325-328DOI: 10.1109/WAINA.2011.123
    [Google Scholar]
  46. Motlagh, N. H., Bagaa, M., & Taleb, T. (2017). UAV-based IoT platform: A crowd surveillance use case. IEEE Communications Magazine, 55:(2), 128–134. https://doi.org/10.1109/MCOM.2017.1600587CM
    [Google Scholar]
  47. Musa, A., Rahman, M. M., Sadi, M. S., & Rahman, M. S. (2018). Crowd reckoning towards preventing the repeat of ‘2015 Hajj Pilgrims Stampede.’ 2nd International Conference on Electrical and Electronic Engineering (ICEEE) (pp. 1–4). IEEE. https://doi.org/10.1109/CEEE.2017.8412922
    [Google Scholar]
  48. Nafea, I. (2017). Mobile health application running on public cloud during Hajj. In M. Younas, I. Awan, & I. Holubova (Eds.), Proceedings of the 14th International Conference on Mobile Web and Intelligent Information Systems (MobiWIS 2017) (Lecture Notes in Computer Science, Vol. 10486:, pp. 129–136). SpringerCham. https://doi.org/10.1007/978-3-319-65515-4
    [Google Scholar]
  49. Novotny, D. L., & Van Der, A. (2020). Capturing the geometry of object categories from video supervision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:(2), 261–275. https://doi.org/10.1109/TPAMI.2018.2871117
    [Google Scholar]
  50. Olson, C. F. (2000). Maximum-likelihood template matching. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 2:, pp. 52–57). IEEE. https://doi.org/10.1109/CVPR.2000.854735
    [Google Scholar]
  51. Öztürk, Ş. (2020, October). Image inpainting based compact hash code learning using modified UNet. In Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 1–5). IEEE. https://doi.org/10.1109/ISMSIT50672.2020.9255239
  52. Öztürk, Ş. (2021). Class-driven content-based medical image retrieval using hash codes of deep features. Biomedical Signal Processing and Control, 68:, 102601. https://doi.org/10.1016/j.bspc.2021.102601
    [Google Scholar]
  53. Parveen, Z., & Aldhlan, K. (2016). Missing pilgrims tracking system using GPS, GSM and Arduino microcontroller. In E. Alhaisoni, & R. A. Ramadan (Eds.), Proceedings of the 2015 International Conference on Recent Advances in Computer Systems (Vol. 38). Atlantis Press. https://doi.org/10.2991/racs-15.2016.4
    [Google Scholar]
  54. Pham, V.-Q., Kozakaya, T., & Yamaguchi, O. (2015). Count forest: Co-voting uncertain number of targets using random forest for crowd density estimation. Proceedings of the IEEE International Conference on Computer Vision (pp. 3253–3261). IEEE. https://doi.org/10.1109/ICCV.2015.372
    [Google Scholar]
  55. Punnappurath, A., & Brown, M. S. (2020). Learning raw image reconstruction-aware deep image compressors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:(4), 1013–1019. https://doi.org/10.1109/TPAMI.2019.2903062
    [Google Scholar]
  56. Redmon, J., Divvala, S., & Girshick, R. (2016). You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (pp. 779–788). IEEE. https://doi.org/10.1109/CVPR.2016.91
    [Google Scholar]
  57. Rehman, A. A. F. U., Lbath, A., Murad, A., Rahman, M. A., Sadiq, B., & Qamar, S. B. A. (2015). A semantic geo-tagged multimedia-based routing in a crowdsourced big data environment. In Proceedings of the 23rd ACM International Conference on Multimedia (MM) (pp. 759–760). Association for Computing Machinery. https://doi.org/10.1145/2733373.2807985
    [Google Scholar]
  58. Rehman, F., & Felemban, E. (2019). A preference-based interactive tool for safe rescheduling of groups for Hajj. IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), Abu Dhabi, United Arab Emirates, (pp. 1–2). IEEE. https://doi.org/10.1109/AICCSA47632.2019.9035318
    [Google Scholar]
  59. Renhe, J., Song, X., Huang, D., Song, X., Xia, T., Cai, Z., Wang, Z., Kim, K.-S., & Shibasaki, R. (2019). A system for predicting citywide crowd dynamics at big events. roceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2114–2122). Association for Computing Machinery. https://doi.org/10.1145/3292500.3330654
    [Google Scholar]
  60. Rohit, J., Mistree, K., & Lavji, K. (2017). A review on abnormal crowd behavior detection. Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). Coimbatore, India. IEEE. https://doi.org/10.1109/ICIIECS.2017.8275999
    [Google Scholar]
  61. Ryan, D., Denman, S., & Fookes, C. (2009). Crowd counting using multiple local features. 2009 Digital Image Computing: Techniques and Applications (DICTA), Australia, 81–88. IEEE. https://doi.org/10.1109/DICTA.2009.22
    [Google Scholar]
  62. Saeed, A. A. S., Abid, E. F. S. N., Waraich, E. U., Atta, S., & Naseer, A. (2016). ICrowd—A framework for monitoring of identifiable crowd. In Proceedings of the 2016 12th International Conference on Innovations in Information Technology (IIT) (pp. 1–7). Institute of Electrical and Electronics Engineers (IEEE). https://doi.org/10.1109/INNOVATIONS.2016.7880036
    [Google Scholar]
  63. Said, Y. F., Barr, M. (2019). Pedestrian detection for advanced driver assistance systems using deep learning algorithms. International Journal of Computer Science and Network Security (IJCSNS), 19:(10), 9–14.
    [Google Scholar]
  64. Said, Y., Barr, M., & Ahmed, H. E. (2020). Design of a face recognition system based on convolutional neural network (CNN). Engineering, Technology & Applied Science Research, 10:(3), 5608–5612. https://doi.org/10.48084/etasr.3490
    [Google Scholar]
  65. Sarathi, S.M.R., & Dey, M.E.A. (2020). CCCNet: An attentionbased deep learning framework for categorized counting of crowd in different body states. In A. Roy (Ed.), Proceedings of the 2020 IEEE International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/IJCNN48605.2020.9207370
    [Google Scholar]
  66. Seema, S. V., & Goutham, R. R. P. S. (2020). Deep learning models for analysis of traffic and crowd management from surveillance videos. In H. Das, P. Pattnaik, S. Rautaray, & K. C. Li (Eds.), Progress in Computing, Analytics and Networking (Vol. 1119:). Springer. https://doi.org/10.1007/978-981-15-2414-1_9
    [Google Scholar]
  67. Shambour, M. K., & Gutub, A. (2022). Progress of IoT research technologies and applications serving Hajj and Umrah. Arabian Journal for Science and Engineering, 47:(2), 1253–1273. https://doi.org/10.1007/s13369-021-05838-7
    [Google Scholar]
  68. Sjarif, S.Z., Shamsuddin, N.N.A., & Hashim, S.M. (2012). Detection of abnormal behaviors in crowd scene: A review. International Journal of Advances in Soft Computing and its Applications, 4:(1), 1–33.
    [Google Scholar]
  69. Tang, N. C., Lin, Y.-Y., Weng, M.-F., & Liao, H.-Y. M. (2015). Cross-camera knowledge transfer for multiview people counting. IEEE Transactions on Image Processing, 24:(1), 80–93. https://doi.org/10.1109/TIP.2014.2363445
    [Google Scholar]
  70. Tang, P., Wang, C., Wang, X., Liu, W., & Zhang, W. Z. (2020). Object detection in videos by high quality object linking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:(5), 1272–1278. https://doi.org/10.1109/TPAMI.2019.2910529
    [Google Scholar]
  71. Technology World Magazine. (2023). Technology world magazine. Digital Saudi Arabia. https://www.tech-mag.net/
  72. Walach, E., & Wolf, L. (2016). Learning to count with CNN boosting. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), European Conference on Computer Vision (pp. 660–676). Springer. https://doi.org/10.1007/978-3-319-46475-6_41
    [Google Scholar]
  73. Wang, C., Zhang, H., & Yang, L. (2015). Deep people counting in extremely dense crowds. In X.Zhou & A.F. Smeaton (Eds.), Proceedings of the 23rd ACM International Conference on Multimedia (pp. 1299–1302). ACM. https://doi.org/10.1145/2733373.2806337
    [Google Scholar]
  74. Wu, M., Zhang, R., Zhang, X., & Li, F. (2020). Object detection based on RGC mask R-CNN. IET Image Processing, 14:(8), 1502–1508. https://doi.org/10.1049/iet-ipr.2019.0057
    [Google Scholar]
  75. Yamin, A. A. M. M., & Al-Ahmadi, H. M. (2016). Integrating social media and mobile apps into Hajj management. In M. N. Hoda (Ed.), Proceedings of the 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 1368–1372). IEEE.
    [Google Scholar]
  76. Yamin, M., & Ades, Y. (2009). Crowd management with RFID & wireless technologies. In H.J.L. Domingos (Ed.), Proceedings of the 1st International Conference on Networks and Communications (NetCoM 2009) (pp. 439–442). IEEE Computer Society – Conference Publishing Services. https://doi.org/10.1109/NetCoM.2009.14
    [Google Scholar]
  77. Yasein, M. (2016). Regulating access to ElSalam Gate in the Prophet’s Mosque at peak times during holidays using simulation. In Proceedings of the 16th Scientific Symposium for Hajj, Umrah & Madinah Visit (May 24–25, 2016, Makkah, Saudi Arabia).
  78. Yasein, M., Al Gamal, M., & Shambour, M. (2018). Crowd movement analysis in AlMasjed AlNabawi using modeling and simulation. In Proceedings of the 18th Scientific Forum for the Research of Hajj, Umrah and Madinah Visit (pp. 4–13). Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm AlQura University, Saudi Arabia
    [Google Scholar]
  79. Yasein, M., Khan, E., & Shambour, M. (2019). Towards smart camps in Mina Holy Place: Exploiting IoT technologies.In Proceedings of the 19th Scientific Forum for the Research of Hajj, Umrah and Madinah Visit (pp. 123–132). Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm AlQura University, Makkah, Saudi Arabia
    [Google Scholar]
  80. Yogameena, B., & Nagananthini, C. (2012). Computer vision based crowd disaster avoidance system: A survey. International Journal of Disaster Risk Reduction, 22:, 95–129. https://doi.org/10.1016/j.ijdrr.2017.02.021
    [Google Scholar]
/content/journals/10.5339/jist.2025.12
Loading
/content/journals/10.5339/jist.2025.12
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error