1887
Volume 2018, Issue 2
  • E-ISSN: 2616-4930

Abstract

Nowadays, Big Data is experiencing an exponential growth in all domains of life. The total amount of data created in the world from the beginning of time up until 2005 is now created every 48 hours! Big Data represents large datasets that cannot be analyzed using traditional computing techniques. Big Data has the potential to transform many aspects of our modern life, such as healthcare services, traditional businesses, politics, and security. Today, Big Data analytics (BDA) is used to predict whether a marriage will be successful or not. Scientists are currently using BDA to predict diseases that will affect humans, in order to invent suitable personal genome-based drugs. This study provides an abstracted review of Big Data applications in order to emphasize the uses of BDA in the following four domains of life: health, education, business and finance, and security and privacy. It also presents summarized reviews of the amazing aspects of Big Data applications, especially in the last four years. Most of the studies reviewed in this article were conducted and published in the last four years.

Loading

Article metrics loading...

/content/journals/10.5339/jist.2018.12
2019-01-09
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jist/2018/2/jist.2018.12.html?itemId=/content/journals/10.5339/jist.2018.12&mimeType=html&fmt=ahah

References

  1. Adelman RA. 2017;, Security glitches. Science, Technology, & Human Values, 016224391772451. DOI: https://doi.org/10.1177/0162243917724515 .
  2. Aguilar SJ. 2017;, Learning analytics: At the nexus of big data, digital innovation, and social justice in education. TechTrends, 62(1), 37–45. DOI: https://doi.org/10.1007/s11528-017-0226-9 .
  3. Almalki M, Gray K, Sanchez FM. 2015;, The use of self-quantification systems for personal health information: Big data management activities and prospects. Health Information Science and Systems, 3(Suppl. 1), S1. DOI: https://doi.org/10.1186/2047-2501-3-S1-S1 .
  4. Alyass A, Turcotte M, Meyre D. 2015;, From big data analysis to personalized medicine for all: Challenges and opportunities. BMC Medical Genomics, 8(1), 33. DOI: https://doi.org/10.1186/s12920-015-0108-y .
  5. Andreu-Perez J, Poon CCY, Merrifield RD, Wong STC, Yang G-Z. 2015;, Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208. DOI: https://doi.org/10.1109/ JBHI.2015.2450362 .
  6. Anshari M, Alas Y, Guan LS. 2016;, Developing online learning resources: Big data, social networks, and cloud computing to support pervasive knowledge. Education and Information Technologies, 21(6), 1663–1677. DOI: https://doi.org/10.1007/s10639-015-9407-3 .
  7. Archenaa J, Anita EAM. 2015;, A survey of big data analytics in healthcare and government. Procedia Computer Science, 50, 408–413. DOI: https://doi.org/10.1016/j.procs.2015.04.021 .
  8. Balachandran BM, Prasad S. 2017;, Challenges and benefits of deploying big data analytics in the cloud for business intelligence. Procedia Computer Science, 112, 1112–1122. DOI: https://doi.org/10.1016/j. procs.2017.08.138 .
  9. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. 2014;, Big data in health care: Using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123–1131. DOI: https://doi. org/10.1377/hlthaff.2014.0041 .
  10. Benzidane K, Alloussi H El, Warrak O El, Fetjah L, Andaloussi SJ, Sekkaki A. 2016;, Toward a cloud- based security intelligence with big data processing. In NOMS 2016 – 2016 IEEE/IFIP Network Operations and Management Symposium (pp. 1089–1092). IEEE. DOI: https://doi.org/10.1109/NOMS.2016.7502966 .
  11. Bertino E, Ferrari E. 2018;. Big data security and privacy. In A comprehensive guide through the Italian data- base research over the last 25 years (pp. 425–439). Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-61893-7_25 .
  12. Chan J, Bennett Moses L. 2016;, Making sense of big data for security. British Journal of Criminology, 57(2), 299–319. DOI: https://doi.org/10.1093/bjc/azw059 .
  13. Chen M, Ma Y, Song J, Lai C-F, Hu B. 2016;, Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications, 21(5), 825–845. DOI: https://doi. org/10.1007/s11036-016-0745-1 .
  14. Chen M, Mao S, Liu Y. 2014;, Big data: A survey. Mobile Networks and Applications, 19(2), 171–209. DOI: https://doi.org/10.1007/s11036-013-0489-0 .
  15. Crampton JW. 2015;, Collect it all: National security, big data and governance. GeoJournal, 80(4), 519–531. DOI: https://doi.org/10.1007/s10708-014-9598-y .
  16. Daniel B. 2015;, Big data and analytics in higher education: Opportunities and challenges. British Journal of Educational Technology, 46(5), 904–920. DOI: https://doi.org/10.1111/bjet.12230 .
  17. Demchenko Y, Grosso P, de Laat C, Membrey P. 2013;. Addressing big data issues in scientific data infra- structure. In 2013 International conference on collaboration technologies and systems (CTS) (pp. 48–55). IEEE. DOI: https://doi.org/10.1109/CTS.2013.6567203 .
  18. Dubey R, Gunasekaran A, Childe SJ, Wamba SF, Papadopoulos T. 2016;, The impact of big data on world-class sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, 84(1–4), 631–645. DOI: https://doi.org/10.1007/s00170-015-7674-1 .
  19. Fan S, Lau RYK, Zhao JL. 2015;, Demystifying big data analytics for business intelligence through the lens of marketing mix. Big Data Research, 2(1), 28–32. DOI: https://doi.org/10.1016/j.bdr.2015.02.006 .
  20. Feinleib D. 2014;. Big Data Bootcamp: What Managers Need to Know to Profit from the Big Data Revolution (1st ed.). New York, NY: Apress.
  21. Gibson DC, Ifenthaler D. 2017;. Preparing the next generation of education researchers for big data in higher education. In Big data and learning analytics in higher education (pp. 29–42). Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-06520-5_4 .
  22. Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A, … Chiroma H. 2016;, The role of big data in smart city. International Journal of Information Management, 36(5), 748–758. DOI: https://doi. org/10.1016/j.ijinfomgt.2016.05.002 .
  23. Katsis Y, Balac N, Chapman D, Kapoor M, Block J, Griswold WG, … Patrick K. 2017;. Big data techniques for public health: A case study. In 2017 IEEE/ACM international conference on connected health: Applica- tions, systems and engineering technologies (CHASE) (pp. 222–231). IEEE. DOI: https://doi.org/10.1109/ CHASE.2017.81 .
  24. Kimble C, Milolidakis G. 2015;, Big data and business intelligence: Debunking the myths. Global Business and Organizational Excellence, 35(1), 23–34. DOI: https://doi.org/10.1002/joe.21642 .
  25. Krumholz HM. 2014;, Big data and new knowledge in medicine: The thinking, training, and tools needed for a learning health system. Health Affairs, 33(7), 1163–1170. DOI: https://doi.org/10.1377/hlthaff.2014.0053 .
  26. Lane JE. 2014;. Building a Smarter University. Albany, NY: SUNY Press.
  27. Lazer D, Kennedy R, King G, Vespignani A. 2014;, The parable of Google Flu: Traps in big data analysis. Science, 343(6176), 1203–1205. DOI: https://doi.org/10.1126/science.1248506 .
  28. Liebowitz J. 2017;. Thoughts on recent trends and future research perspectives in big data and analytics in higher education. In Big data and learning analytics in higher education (pp. 7–17). Cham: Springer. DOI: https://doi.org/10.1007/978-3-319-06520-5_2 .
  29. Lv Z, Song H, Basanta-Val P, Steed A, Jo M. 2017;, Next-generation big data analytics: State of the art, challenges, and future research topics. IEEE Transactions on Industrial Informatics, 13(4), 1891–1899. DOI: https://doi.org/10.1109/TII.2017.2650204 .
  30. Mann S. 2017;, Big data is a big lie without little data: Humanistic intelligence as a human right. Big Data & Society, 4(1), 1–10. DOI: https://doi.org/10.1177/2053951717691550 .
  31. McAfee A, Brynjolfsson E. 2012;, Big data: The management revolution. Harvard Business Review, 20(10), 60–68.
  32. Murdoch TB, Detsky AS. 2013;, The inevitable application of big data to health care. Journal of the American Medical Association, 309(13), 1351–1352. DOI: https://doi.org/10.1001/jama.2013.393 .
  33. Picciano AG. 2012;, The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), 9–20.
  34. Pramanik MI, Lau RYK, Demirkan H, Azad MAK. 2017;, Smart health: Big data enabled health para- digm within smart cities. Expert Systems with Applications, 87, 370–383. DOI: https://doi.org/10.1016/j. eswa.2017.06.027 .
  35. Pramanik MI, Zhang W, Lau RYK, Li C. 2016;. A framework for criminal network analysis using big data. In 2016 IEEE 13th international conference on e-business engineering (ICEBE) (pp. 17–23). IEEE. DOI: https://doi.org/10.1109/ICEBE.2016.015 .
  36. Raghupathi W, Raghupathi V. 2014;, Big data analytics in healthcare: Promise and potential. Health Informa- tion Science and Systems, 2(1), 3. DOI: https://doi.org/10.1186/2047-2501-2-3 .
  37. Roy D, Patel R, DeCamp P, Kubat R, Fleischman M, Roy B, … Gorniak P. 2006;. The human speechome project. In 28th Annual conference of the cognitive science society (pp. 2059–2064). DOI: https://doi. org/10.1007/11880172_15 .
  38. Sin K, Muthu L. 2015;, Application of big data in education data mining and learning analytics – A literature review. ICTACT Journal on Soft Computing, 5(4), 1035–1049. DOI: https://doi.org/10.21917/ijsc.2015.0145 .
  39. Sivarajah U, Kamal MM, Irani Z, Weerakkody V. 2017;, Critical analysis of big data challenges and analytical methods. Journal of Business Research, 70, 263–286. DOI: https://doi.org/10.1016/j.jbus- res.2016.08.001 .
  40. Su Y-S, Ding T-J, Lue J-H, Lai C-F, Su C-N. 2017;. Applying big data analysis technique to students' learning behavior and learning resource recommendation in a MOOCs course. In 2017 International conference on applied system innovation (ICASI) (pp. 1229–1230). IEEE. DOI: https://doi.org/10.1109/ ICASI.2017.7988114 .
  41. Thompson G. 2017;, Computer adaptive testing, big data and algorithmic approaches to education. British Journal of Sociology of Education, 38(6), 827–840. DOI: https://doi.org/10.1080/01425692.2016.1158640 .
  42. Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV. 2015;, Big data analytics: A survey. Journal of Big Data, 2(1), 21. DOI: https://doi.org/10.1186/s40537-015-0030-3 .
  43. van Dijck J. 2014;, Datafication, dataism and dataveillance: Big Data between scientific paradigm and ideology. Surveillance & Society, 12(2), 197–208. Retrieved from: https://ojs.library.queensu.ca/index.php/surveil- lance-and-society/article/view/datafication/5136.
  44. Victor N, Lopez D, Abawajy JH. 2016;, Privacy models for big data: A survey. International Journal of Big Data Intelligence, 3(1), 61. DOI: https://doi.org/10.1504/IJBDI.2016.073904 .
  45. Williamson B. 2016;, Digital education governance: Data visualization, predictive analytics, and ‘real-time’ policy instruments. Journal of Education Policy, 31(2), 123–141. DOI: https://doi.org/10.1080/02680939.2015.1035758 .
  46. Xiang Z, Schwartz Z, Gerdes JH, Uysal M. 2015;, What can big data and text analytics tell us about hotel guest experience and satisfaction? International Journal of Hospitality Management, 44, 120–130. DOI: https://doi.org/10.1016/j.ijhm.2014.10.013 .
  47. Xu Z, Hu C, Mei L. 2016;, Video structured description technology based intelligence analysis of surveil- lance videos for public security applications. Multimedia Tools and Applications, 75(19), 12155–12172. DOI: https://doi.org/10.1007/s11042-015-3112-5 .
  48. Yang Y, Niu X, Li L, Peng H, Ren J, Qi H. 2016;, General Theory of security and a study of hacker's behavior in big data era. Peer-to-Peer Networking and Applications, 11(2), 210–219. DOI: https://doi. org/10.1007/s12083-016-0517-5 .
  49. Zhang Y, Qiu M, Tsai C-W, Hassan MM, Alamri A. 2017;, Health-CPS: Healthcare cyber-physical sys- tem assisted by cloud and big data. IEEE Systems Journal, 11(1), 88–95. DOI: https://doi.org/10.1109/ JSYST.2015.2460747 .
  50. Zuech R, Khoshgoftaar TM, Wald R. 2015;, Intrusion detection and big heterogeneous data: A survey. Journal of Big Data, 2(1), 3. DOI: https://doi.org/10.1186/s40537-015-0013-4 .
http://instance.metastore.ingenta.com/content/journals/10.5339/jist.2018.12
Loading
  • Article Type: Review Article
Keyword(s): Big Data , Big Data analysis , Big Data applications and cloud computing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error