1887
Volume 2022, Issue 1
  • EISSN: 2616-4930

Abstract

Vaccine development and production is an effort to combat the Covid-19 outbreak. A vaccine that is being developed in Indonesia, and which has drawn public attention, especially on social media, is introduced as the Nusantara vaccine. From its first appearance to the temporary suspension of research by the BPOM (National Agency of Drug and Food Control), the Nusantara vaccine has raised pros and cons and has become a public conversation, especially on social media such as Twitter. The number of conversations made by social media users, especially on Twitter about the Nusantara vaccine, shows that the topic has attracted a great deal of user interests. This study aims to determine the polarization of Twitter users in Indonesia towards the Nusantara vaccine, which can be used as a reference for policy-makers. It also aims to determine the performance of the naïve Bayes algorithm in classifying Indonesian texts. The research method used in analyzing sentiment was text mining. Sentiment analysis was performed using the naïve Bayes algorithm. This study created a classification with two models, namely a two-class model (positive, negative) and a non-class model (positive, negative, neutral). From the processed data, it was evident that 55.51% of users expressed positive sentiment, 27.03% had negative sentiment, and the remaining 17.46% had neutral sentiment. The results of the naïve Bayes classification showed that the best accuracy rate was 68.75% and 50% for the two-class and three-class classifications, respectively.

Loading

Article metrics loading...

/content/journals/10.5339/jist.2022.4
2022-03-31
2022-10-05
Loading full text...

Full text loading...

/deliver/fulltext/jist/2022/1/jist.2022.4.html?itemId=/content/journals/10.5339/jist.2022.4&mimeType=html&fmt=ahah

References

  1. Aldila, D., Khoshnaw, S. H. A., Safitri, E., Anwar, Y. R., Bakry, A. R. Q., Samiadji, B. M., Anugerah, D. A., GH, M. F. A., Ayulani, I. D., & Salim, S. N. (2020). A mathematical study on the spread of COVID-19 considering social distancing and rapid assessment: The case of Jakarta, Indonesia. Chaos, Solitons & Fractals, 139:, 110042. https://doi.org/10.1016/j.chaos.2020.110042
    [Google Scholar]
  2. Azizah, K. N. (n.d.). Hasil Uji Klinis Fase-1 Vaksin Nusantara Diungkap, Ini Detailnya. >Detik Health. Retrieved April 4, 2021, from https://health.detik.com/berita-detikhealth/d-5488230/hasil-uji-klinis-fase-1-vaksin-nusantara-diungkap-ini-detailnya
    [Google Scholar]
  3. Carracedo, P., Puertas Medina, R., & Luisa Martí Selva, M. (2020). Research lines on the impact of the COVID-19 pandemic on business. A text mining analysis. Journal of Business Research, 132:, 586–593. https://doi.org/10.1016/j.jbusres.2020.11.043
    [Google Scholar]
  4. Chatterjee, S., Goyal, D., Prakash, A., & Sharma, J. (2020). Exploring healthcare/health-product ecommerce satisfaction: A text mining and machine learning application. Journal of Business Research, 131:, 815–825. https://doi.org/10.1016/j.jbusres.2020.10.043
    [Google Scholar]
  5. CNN. (n.d.). Jatuh Bangun Pamor Vaksin Nusantara Besutan Terawan. CNN Indonesia. Retrieved April 6, 2021, from https://www.cnnindonesia.com/nasional/20210324205543-20-621756/jatuh-bangun-pamor-vaksin-nusantara-besutan-terawan
    [Google Scholar]
  6. Collomb, A., Costea, C., Joyeux, D., Hasan, O., & Brunie, L. (2014). A study and comparison of sentiment analysis methods for reputation evaluation. Research Report RR-LIRIS-2014-002, 10. http://liris.cnrs.fr/Documents/Liris-6508.pdf
    [Google Scholar]
  7. Daramatasia, W. (2012). Peran Vitamin D Dalam Regulasi Sistem Imunitas Melalui Sel Dendritik. Jurnal Ilmiah Kesehatan Media Husada, 1: (1), 55–64.
    [Google Scholar]
  8. Fitri, E. (2020). Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine. Jurnal Transformatika, 18:(1), 71. https://doi.org/10.26623/transformatika.v18i1.2317
    [Google Scholar]
  9. Fitri, V. A., Andreswari, R., & Hasibuan, M. A. (2019). Sentiment analysis of social media Twitter with case of Anti-LGBT campaign in Indonesia using Naïve Bayes, decision tree, and random forest algorithm. Procedia Computer Science, 161:, 765–772. https://doi.org/10.1016/j.procs.2019.11.181
    [Google Scholar]
  10. Hartanto, H. (2017). Text Mining Dan Sentimen Analisis Twitter Pada Gerakan Lgbt. Intuisi?: Jurnal Psikologi Ilmiah, 9:(1), 18–25.
    [Google Scholar]
  11. Jung, H., & Lee, B. G. (2020). Research trends in text mining: Semantic network and main path analysis of selected journals. Expert Systems with Applications, 162:, 113851. https://doi.org/10.1016/j.eswa.2020.113851
    [Google Scholar]
  12. Kanna, P. R., & Pandiaraja, P. (2019). An efficient sentiment analysis approach for product review using Turney algorithm. Procedia Computer Science, 165:(2019), 356–362. https://doi.org/10.1016/j.procs.2020.01.038
    [Google Scholar]
  13. Mahayana, F. S., Suryawati, C., & Agushybana, F. (2020). Penanganan Pasien Covid-19 pada Rumah Sakit di Indonesia. Jurnal Kesehatan, 8:(3), 162–170. https://doi.org/10.24252/kesehatan.v7i2.54
    [Google Scholar]
  14. Makmun, A., & Hazhiyah, S. F. (2020). Tinjauan Terkait Pengembangan Vaksin Covid 19. Molucca Medica, 13:, 52–59. https://doi.org/10.30598/molmed.2020.v13.i2.52
    [Google Scholar]
  15. Nugraheny, D. E. (2021). Perjalanan Vaksin Nusantara: Dikritik, Ditinggalkan Tim Peneliti, hingga Diingatkan Jokowi Halaman all Kompas.com. Kompas. https://nasional.kompas.com/read/2021/03/13/05330051/perjalanan-vaksin-nusantara–dikritik-ditinggalkan-tim-peneliti-hingga?page=all
    [Google Scholar]
  16. Oueslati, O., Cambria, E., HajHmida, M. B., & Ounelli, H. (2020). A review of sentiment analysis research in Arabic language. Future Generation Computer Systems, 112:, 408–430. https://doi.org/10.1016/j.future.2020.05.034
    [Google Scholar]
  17. Pejic-Bach, M., Bertoncel, T., Meško, M., & Krstić, Ž. (2020). Text mining of industry 4.0 job advertisements. International Journal of Information Management, 50:, 416–431. https://doi.org/10.1016/j.ijinfomgt.2019.07.014
    [Google Scholar]
  18. Pramudiarja, A. U. (2021). Vaksin Nusantara Vs Vaksin Merah Putih, Bedanya Apa Sih? Detik Health. https://health.detik.com/berita-detikhealth/d-5399932/vaksin-nusantara-vs-vaksin-merah-putih-bedanya-apa-sih
    [Google Scholar]
  19. Purnomo, W. G., & Purnomo, P. P. (2017). Akurasi Text Mining Menggunakan Algoritma K-Nearest Neighbour pada Data Content Berita SMS. Jurnal Format, 6:(1), 1–13.
    [Google Scholar]
  20. Rahab, H., Zitouni, A., & Djoudi, M. (2019). SANA: Sentiment analysis on newspapers comments in Algeria. Journal of King Saud University – Computer and Information Sciences, 33:(7), 899–907. https://doi.org/10.1016/j.jksuci.2019.04.012
    [Google Scholar]
  21. Ratnawati, F. (2018). Implementasi Algoritma Naive Bayes Terhadap Analisis Sentimen Opini Film Pada Twitter. INOVTEK Polbeng – Seri Informatika, 3:(1), 50. https://doi.org/10.35314/isi.v3i1.335
    [Google Scholar]
  22. Rosmita, & Setyorini, D. (2020). Analisa Tren Yang Terkonfirmasi Covid 19 Awal Tahun 2021 Di Indonesia. Jurnal Mitra Manajemen, 4:(12), 1599–1606.
    [Google Scholar]
  23. Villeneuve, H., & O'Brien, W. (2020). Listen to the guests: Text-mining Airbnb reviews to explore indoor environmental quality. Building and Environment, 169:, 106555. https://doi.org/10.1016/j.buildenv.2019.106555
    [Google Scholar]
  24. Watratan, A. F. B., Puspita, A., & Moeis, D. (2020). Implementasi Algoritma Naive Bayes Untuk Memprediksi Tingkat Penyebaran Covid-19 Di Indonesia. Journal of Applied Computer Science and Technology (Jacost), 1:(1), 7–14.
    [Google Scholar]
  25. Wibawa, A. P., Kurniawan, A. C., Murti, D. M. P., Adiperkasa, R. P., Putra, S. M., Kurniawan, S. A., & Nugraha, Y. R. (2019). Naïve Bayes classifier for journal quartile classification. International Journal of Recent Contributions from Engineering, Science & IT (IJES), 7:(2), 91. https://doi.org/10.3991/ijes.v7i2.10659
    [Google Scholar]
  26. Wu, C. S., Kuo, C. J., Su, C. H., Wang, S. H., & Dai, H. J. (2020). Using text mining to extract depressive symptoms and to validate the diagnosis of major depressive disorder from electronic health records. Journal of Affective Disorders, 260:, 617–623. https://doi.org/10.1016/j.jad.2019.09.044
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jist.2022.4
Loading
/content/journals/10.5339/jist.2022.4
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error