1887
Volume 2025, Issue 1
  • EISSN: 2223-506X

Abstract

Mineral carbonation has been proposed as an option for carbon capture and utilisation in the construction sector, where it has been successfully demonstrated in the production of cementitious materials, concrete, and associated products. Synthetic magnesium carbonate trihydrate, nesquehonite, investigated in this article, develops cementitious properties via thermal processing, where the sample paste is heated and hardened inside a mould. Such material would incorporate around 30% of CO into its final composition, and near-maximum in terms of the current development of carbonate-bearing construction materials. Initially, the mechanism of strength development was thought to be linked to phase conversion (e.g., towards hydromagnesite). However, it has not yet been systematically investigated. Thus, this study provides statistically validated insights into some of the synthesis and processing factors that influence the resulting compressive strength of nesquehonite-based products. The results disclosed within suggest a more eco-efficient production technique and propose a working hypothesis on the relation between compressive strength and the nesquehonite—hydromagnesite conversion reaction.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2025.1
2025-06-30
2025-07-20
Loading full text...

Full text loading...

/deliver/fulltext/connect/2025/1/connect.2025.issue1.1.html?itemId=/content/journals/10.5339/connect.2025.1&mimeType=html&fmt=ahah

References

  1. Mazzotti M. Mineral Carbonation and Industrial Uses of Carbon Dioxide. Cambridge University Press; 2005. p.319–338.
  2. Huan Q, Wibowo H, Yan M, Song M. A review of CO2 mineral storage: current processes, typical applications, and life cycle assessment. Journal of Environmental Chemical Engineering. 2024;12:114785. doi:10.1016/J.JECE.2024.114785
    [Google Scholar]
  3. Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM. Sustainable development and climate change initiatives. Cement and Concrete Research. 2008;38:115–127. doi:10.1016/j.cemconres.2007.09.008
    [Google Scholar]
  4. Mac Dowell N, Fennell PS, Shah N, Maitland GC. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change. 2017;7:243–249. doi:10.1038/nclimate3231
    [Google Scholar]
  5. Chen X, Yao D, Ji L, Jin Y. Recent developments in CO2 permanent storage using mine waste carbonation. Materials Today Sustainability. 2025;29:101070. doi:10.1016/J.MTSUST.2024.101070
    [Google Scholar]
  6. Cao R, Hao Y, Li Y, Liao W. Emerging trends in lifecycle assessment of building construction for greenhouse gas control: implications for capacity building. Discover Applied Sciences. 2025;7:1–26. doi:10.1007/S42452-025-06853-1
    [Google Scholar]
  7. Chaliulina R. Utilisation of carbon capture and mineralisation products: considering monohydrocalcite as a potential functional filler. Open Access Library Journal. 2022;9:1–19. doi:10.4236/OALIB.1109436
    [Google Scholar]
  8. Comes J, Islamovic E, Lizandara-Pueyo C, Seto J. Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Frontiers in Chemistry. 2024;12:1472284. doi:10.3389/FCHEM.2024.1472284
    [Google Scholar]
  9. Suescum-Morales D, Bravo M, Silva RV, Jiménez JR, Fernandez-Rodriguez JM, de Brito J. Effect of reactive magnesium oxide in alkali-activated fly ash mortars exposed to accelerated CO2 curing. Construction and Building Materials. 2022;342:127999. doi:10.1016/J.CONBUILDMAT.2022.127999
    [Google Scholar]
  10. Haque MA, Dai J-G, Zhao X-L. Magnesium cements and their carbonation curing: a state-of-the-art review. Low-Carbon Materials and Green Construction. 2024;2:(2024):1–27. doi:10.1007/S44242-023-00033-3
    [Google Scholar]
  11. Cho K, Chae S, Kim C. Forced mineral carbonation of MgO nanoparticles synthesized by aerosol methods at room temperature. Nanomaterials. 2023;13:(2):281. doi:10.3390/nano13020281
    [Google Scholar]
  12. Lamérand C, Shirokova LS, Bénézeth P, Rols JL, Pokrovsky OS. Carbon sequestration potential of Mg carbonate and silicate biomineralization in the presence of cyanobacterium Synechococcus. Chemical Geology. 2022;599:120854. doi:10.1016/J.CHEMGEO.2022.120854
    [Google Scholar]
  13. Caulfield B, Christodoulatos C, Prigiobbe V. Enhanced precipitation of magnesium carbonates using carbonic anhydrase. Nanoscale. 2022;14:(37):13570–13579. doi:10.1039/D2NR03199J
    [Google Scholar]
  14. Le VG, Vo DVN, Tran HT, Duy Dat N, Luu SDN, Rahman MM, et al.. Recovery of magnesium from industrial effluent and its implication on carbon capture and storage. ACS Sustainable Chemistry & Engineering. 2021;9:(19):6732–6740. https://pubs.acs.org/doi/10.1021/acssuschemeng.1c00754
    [Google Scholar]
  15. Monkman S, MacDonald M. Carbon dioxide upcycling into industrially produced concrete blocks. Construction and Building Materials. 2016;124:127–132. doi:10.1016/j.conbuildmat.2016.07.046
    [Google Scholar]
  16. Chaliulina R, Galvez-Martos JL, Hakki A, Elhoweris A, Mwanda J, Al-Horr Y. Eco materials from CO2 capture: compressive strengths of a plasterboard alternative. Construction and Building Materials. 2021;312:125276. doi:10.1016/J.CONBUILDMAT.2021.125276
    [Google Scholar]
  17. Suescum-Morales D, Cantador-Fernández D, Jiménez JR, Fernández JM. Mitigation of CO2 emissions by hydrotalcites of Mg3Al-CO3 at 0 °C and high pressure. Applied Clay Science. 2021;202:105950. doi:10.1016/J.CLAY.2020.105950
    [Google Scholar]
  18. Jauffret G, Morrison J, Glasser FP. On the thermal decomposition of nesquehonite. Journal of Thermal Analysis and Calorimetry. 2015;122:601–609. doi:10.1007/s10973-015-4756-0
    [Google Scholar]
  19. Morrison J. Carbon dioxide sequestration into novel, useful materials: synthesis and properties. PhD Thesis. University of Aberdeen; 2017.
  20. Gálvez-Martos JL, Chaliulina R, Medina-Martos E, Elhoweris A, Hakki A, Mwanda J, et al.. Eco-efficiency of a novel construction material produced by carbon capture and utilization. Journal of CO2 Utilization. 2021;49:101545. doi:10.1016/J.JCOU.2021.101545
    [Google Scholar]
  21. Alhorr YM, Elhoweris A, Morrison J, Galvez-Martos J-L. The conversion of magnesium carbonates into plaster-like products?: a preliminary study of the hardening mechanism. Advancements in Civil Engineering & Technology. 2018;2:4–9.
    [Google Scholar]
  22. Filho HCS, Consoli NC. Sustainable binders stabilizing dispersive clay. Journal of Materials in Civil Engineering. 2020;33:06020026. doi:10.1061/(ASCE)MT.1943-5533.0003595
    [Google Scholar]
  23. Andriani DP, Novareza O, Purwandani FP, Yuniarto T. Parameters optimization of bio composite manufacturing using experimental design. IOP Conference Series: Earth and Environmental Science. 2019;391:012010. doi:10.1088/1755-1315/391/1/012010
    [Google Scholar]
  24. International Organization for Standardization. ISO 14045. Eco-efficiency assessment of product systems: principles, requirements and guidelines. Geneva: ISO; 2012.
  25. ASTM International. ASTM Standard C39/C39M-16. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken: ASTM International; 2016. doi:10.1520/C0039_C0039M-20
  26. Ferrini V, De Vito C, Mignardi S. Synthesis of nesquehonite by reaction of gaseous CO2 with Mg chloride solution: its potential role in the sequestration of carbon dioxide. Journal of Hazardous Materials. 2009;168:832–837. doi:10.1016/j.jhazmat.2009.02.103
    [Google Scholar]
  27. Hopkinson L, Rutt K, Cressey G. Phase transitions in the system MgO-CO2-H2O during CO2 degassing of Mg-bearing solutions. Geochimica et Cosmochimica Acta. 2012;76:1–13. doi:10.1016/j.gca.2011.10.023
    [Google Scholar]
  28. Kloprogge JT, Nothdurft L, Duong LV, Webb GE. Low temperature synthesis and characterization of nesquehonite. Journal of Materials Science Letters. 2003;22:825–829. doi:10.1023/A:1023916326626
    [Google Scholar]
  29. Lanas J, Alvarez JI. Dolomitic lime: thermal decomposition of nesquehonite. Thermochimica Acta. 2004;421:123–132. doi:10.1016/j.tca.2004.04.007
    [Google Scholar]
  30. Morgan B, Madsen IC, Gozukara YM, Habsuda J. Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: implications for low-temperature CO2 storage. International Journal of Greenhouse Gas Control. 2015;39:366–376. doi:10.1016/j.ijggc.2015.05.033
    [Google Scholar]
  31. Waskom ML. seaborn: statistical data visualization. Journal of Open Source Software. 2021;6:3021. doi:10.21105/JOSS.03021
    [Google Scholar]
  32. Petrone C, Magliulo G, Manfredi G. Mechanical properties of plasterboards: experimental tests and statistical analysis. Journal of Materials in Civil Engineering. 2016;28:04016129. doi:10.1061/(asce)mt.1943-5533.0001630
    [Google Scholar]
  33. Medina-Martos E, Galvez-Martos J-L, Almarza J, Lirio C, Iribarren D, Valente A, et al.. Environmental and economic performance of carbon capture with sodium hydroxide. Journal of CO2 Utilization. 2022;60:101991. doi:10.1016/J.JCOU.2022.101991
    [Google Scholar]
/content/journals/10.5339/connect.2025.1
Loading
/content/journals/10.5339/connect.2025.1
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error