1887
Volume 2025, Issue 1
  • EISSN: 2220-2749

Abstract

Artificial intelligence (AI) is revolutionizing the field of neuro-oncology, especially in the context of astrocytoma detection and management. AI and deep learning techniques have significantly advanced the diagnostic process, enabling more accurate tumor grading and classification through comprehensive analysis of histopathological images. AI-powered tools, such as convolutional neural networks, assist in distinguishing between tumor subtypes, while radiomics and computer vision improve real-time intraoperative decision-making, thereby aiding neurosurgeons to optimize surgical resections with greater precision.

In terms of treatment, AI facilitates personalized therapy by integrating genomic, radiological, and clinical data to tailor treatment strategies based on individual tumor profiles. Prognostic models using AI have demonstrated up to 80% accuracy in predicting patient outcomes, guiding oncologists in selecting the most effective interventions. AI-driven tumor segmentation enhances radiotherapy precision by accurately identifying organs at risk, thereby reducing radiation exposure to healthy tissues. Moreover, AI contributes to drug discovery by accelerating the identification of novel therapeutic compounds with high blood–brain barrier permeability.

Despite these advancements, several challenges hinder AI’s clinical integration, including data privacy concerns, algorithmic bias, and the need for regulatory frameworks to ensure equitable and ethical AI applications in healthcare. To bridge this gap, the health sector must establish standardized AI protocols, invest in AI-compatible infrastructure, and integrate AI-driven decision support systems into clinical workflows. Additionally, interdisciplinary collaboration between AI specialists, radiologists, and oncologists is essential to validate AI models through large-scale multicenter studies and randomized controlled trials.

Future research should focus on expanding AI accessibility in resource-limited settings and addressing ethical concerns through transparent AI governance. By implementing structured mechanisms for AI adoption, the healthcare sector can harness its full potential to revolutionize astrocytoma management, ultimately improving diagnostic accuracy, treatment efficacy, and patient outcomes.

Loading

Article metrics loading...

/content/journals/10.5339/avi.2025.3
2025-03-17
2025-03-26
Loading full text...

Full text loading...

/deliver/fulltext/avi/2025/1/avi.2025.3.html?itemId=/content/journals/10.5339/avi.2025.3&mimeType=html&fmt=ahah

References

  1. Alcantara Llaguno SR, Parada LF. Cell of origin of glioma: biological and clinical implications. Br J Cancer. 2016Nov; 115:(12):1445–50. https://doi.org/10.1038/bjc.2016.354
    [Google Scholar]
  2. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al.. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021Aug2; 23:(8):1231–51. https://doi.org/10.1093/neuonc/noab106
    [Google Scholar]
  3. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al.. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015Jun; 372:(26):2499–508. https://doi.org/10.1056/NEJMoa1407279
    [Google Scholar]
  4. Reuss DE, Mamatjan Y, Schrimpf D, Capper D, Hovestadt V, Kratz A, et al.. IDH mutant diffuse and anaplastic astrocytomas have similar age at presentation and little difference in survival: a grading problem for WHO. Acta Neuropathol. 2015Jun; 129:(6):867–73. https://doi.org/10.1007/s00401-015-1438-8
    [Google Scholar]
  5. Posti JP, Bori M, Kauko T, Sankinen M, Nordberg J, Rahi M, et al.. Presenting symptoms of glioma in adults. Acta Neurol Scand. 2015Feb5; 131:(2):88–93. https://doi.org/10.1111/ane.12285
    [Google Scholar]
  6. Lasocki A, Tsui A, Tacey MA, Drummond KJ, Field KM, Gaillard F. MRI grading versus histology: predicting survival of World Health Organization grade II-IV astrocytomas. Am J Neuroradiol. 2015Jan; 36:(1):77–83. https://doi.org/10.3174/ajnr.A4077
    [Google Scholar]
  7. Murakami R, Hirai T, Kitajima M, Fukuoka H, Toya R, Nakamura H, et al.. Magnetic resonance imaging of pilocytic astrocytomas: usefulness of the minimum apparent diffusion coefficient (ADC) value for differentiation from high-grade gliomas. Acta Radiol. 2008May; 49:(4):462–7. https://doi.org/10.1080/02841850801918555
    [Google Scholar]
  8. Xia Jg, Yin B, Liu L, Lu Yp, Geng Dy, Tian Wz. Imaging features of pilocytic astrocytoma in cerebral ventricles. Clin Neuroradiol. 2016Sep; 26:(3):341–6. https://doi.org/10.1007/s00062-015-0370-6
    [Google Scholar]
  9. Aghi MK, Nahed BV, Sloan AE, Ryken TC, Kalkanis SN, Olson JJ. The role of surgery in the management of patients with diffuse low grade glioma: a systematic review and evidence-based clinical practice guideline. J Neurooncol. 2015Dec; 125:(3):503–30. https://doi.org/10.1007/s11060-015-1867-1
    [Google Scholar]
  10. Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, et al.. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017Jun; 18:(6):e315–29. https://doi.org/10.1016/S1470-2045(17)30194-8
    [Google Scholar]
  11. Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, et al.. CBTRUS statistical report: primary brain and Central Nervous System tumors diagnosed in the United States in 2007–2011. NeuroOncol. 2014Oct; 16:(Suppl 4):iv1–63. https://doi.org/10.1093/neuonc/nou223
    [Google Scholar]
  12. Wegman-Ostrosky T, Noverón NR, Mejía-Pérez SI, Sánchez-Correa TE, Álvarez RM, Cacho B, et al.. Abstract 3420: clinical prognostic factors in adult with astrocytoma: historic cohort. Cancer Res. 2016Jul15; 76:3420. https://doi.org/10.1158/1538-7445.AM2016-3420
    [Google Scholar]
  13. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019Apr; 28:(2):73–81. https://doi.org/10.1080/13645706.2019.1575882
    [Google Scholar]
  14. AlSamhori ARF, AlSamhori JF, AlSamhori AF. ChatGPT role in a medical survey. High Yield Med Rev. 2023; 1:(2). https://doi.org/10.59707/hymrTFFP5435
    [Google Scholar]
  15. AlSamhori JF, AlSamhori ARF, Amourah RM, AlQadi Y, Koro ZW, Haddad TRA, et al.. Artificial intelligence for hearing loss prevention, diagnosis, and management. J Med Surg Public Health. 2024Aug; 3:100133. https://doi.org/10.1016/j.glmedi.2024.100133
    [Google Scholar]
  16. AlSamhori JF, AlSamhori ARF, Duncan LA, Qalajo A, Alshahwan HF, Al-abbadi M, et al.. Artificial intelligence for breast cancer: implications for diagnosis and management. J Med Surg Public Health, 2024Aug; 3:100120. https://doi.org/10.1016/j.glmedi.2024.100120
    [Google Scholar]
  17. AlSamhori JF, AlSamhori ARF, Kakish DRK, Nashwan AJ. Transforming depression care with artificial intelligence. Asian J Psychiatr. 2024Nov; 101:104235. https://doi.org/10.1016/j.ajp.2024.104235
    [Google Scholar]
  18. Kbaiah AT, Nashwan AJ. Beyond the image: artificial intelligence’s role in refining and transforming radiology nursing. Avicenna, 2024Mar1; 2024:(1):3. https://doi.org/10.5339/avi.2024.3
    [Google Scholar]
  19. Othman MI, Nashwan AJ, Abujaber AA, Khatib MY. Artificial intelligence applications in the Intensive Care Unit for sepsis-associated encephalopathy and delirium: a narrative review. Avicenna. 2024Jan10; 2023:(2):11. https://doi.org/10.5339/avi.2023.11
    [Google Scholar]
  20. Umar TP, Jain N, Papageorgakopoulou M, Shaheen RS, Alsamhori JF, Muzzamil M. Artificial intelligence for screening and diagnosis of amyotrophic lateral sclerosis: a systematic review and meta-analysis. Amyotroph Lateral Scler Frontotemporal Degener. 2024Aug; 25:(5–6):425–36. https://doi.org/10.1080/21678421.2024.2334836
    [Google Scholar]
  21. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018Aug; 18:(8):500–10. https://doi.org/10.1038/s41568-018-0016-5
    [Google Scholar]
  22. Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl. 2004Sep; 86:(5):334–8. https://doi.org/10.1308/147870804290
    [Google Scholar]
  23. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al.. International evaluation of an AI system for breast cancer screening. Nature. 2020Jan; 577:(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6
    [Google Scholar]
  24. Heslot C, Cogné M, Guillouët E, Perdrieau V, Lefevre-Dognin C, Glize B, et al.. Management of unfavorable outcome after mild traumatic brain injury: review of physical and cognitive rehabilitation and of psychological care in post-concussive syndrome. Neurochirurgie. 2021May; 67:(3):283–9. https://doi.org/10.1016/j.neuchi.2020.09.001
    [Google Scholar]
  25. Mehrholz J, Hädrich A, Platz T., Kugler J, Pohl M. 2012 Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. In: The Cochrane Collaboration, editor. Cochrane Database of Systematic Reviews (p. CD006876.pub3). John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.CD006876.pub3
    [Google Scholar]
  26. Baker CR, Pease M, Sexton DP, Abumoussa A, Chambless LB. Artificial intelligence innovations in neurosurgical oncology: a narrative review. J Neurooncol. 2024Sep; 169:489–96. https://doi.org/10.1007/s11060-024-04757-5
    [Google Scholar]
  27. Sotoudeh H, Shafaat O, Bernstock JD, Brooks MD, Elsayed GA, Chen JA, et al.. Artificial intelligence in the management of glioma: era of personalized medicine. Front Oncol. 2019Aug14; 9: 768:. https://doi.org/10.3389/fonc.2019.00768
    [Google Scholar]
  28. Abdel Razek AAK, Alksas A, Shehata M, AbdelKhalek A, Abdel Baky K, El-Baz A, et al.. Clinical applications of artificial intelligence and radiomics in neuro-oncology imaging. Insights Imaging. 2021Oct21; 12:(1):152. https://doi.org/10.1186/s13244-021-01102-6
    [Google Scholar]
  29. Rudie JD, Rauschecker AM, Bryan RN, Davatzikos C, Mohan S. Emerging applications of artificial intelligence in neuro-oncology. Radiology. 2019Mar; 290:(3):607–18. https://doi.org/10.1148/radiol.2018181928
    [Google Scholar]
  30. M, Irmici G, Foschini C, Danesini GM, Falsitta LV, Serio ML, et al.. Artificial intelligence in brain tumor imaging: a step toward personalized medicine. Curr Oncol. 2023; 30:(3):2673–701. https://doi.org/10.3390/curroncol30030203
    [Google Scholar]
  31. Devi N, Bhattacharyya K. Automatic brain tumor detection and classification of grades of astrocytoma. In: Mandal JK, Saha G, Kandar D, Maji AK, editors. Proceedings of the International Conference on Computing and Communication Systems. (Vol. 24, pp. 125–135) Springer Singapore; 2018. https://doi.org/10.1007/978-981-10-6890-4_11
    [Google Scholar]
  32. Subashini MM, Sahoo SK, Sunil V, Easwaran S. A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst Appl, 2016Jan; 43:186–96. https://doi.org/10.1016/j.eswa.2015.08.036
    [Google Scholar]
  33. Jose L, Liu S, Russo C, Cong C, Song Y, Rodriguez M, et al.. Artificial intelligence–assisted classification of gliomas using whole slide images. Arch Pathol Lab Med. 2023Aug1; 147:(8):916–24. https://doi.org/10.5858/arpa.2021-0518-OA
    [Google Scholar]
  34. Aldape KD, Ballman K, Furth A, Buckner JC, Giannini C, Burger PC, et al.. Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol. 2004Jul; 63:(7):700–7. https://doi.org/10.1093/jnen/63.7.700
    [Google Scholar]
  35. Zhang H, Wu G, Tu H, Huang F. Discovery of serum biomarkers in astrocytoma by SELDI–TOF MS and proteinchip technology. J Neurooncol. 2007Sep; 84:(3):315–23. https://doi.org/10.1007/s11060-007-9376-5
    [Google Scholar]
  36. Mousavi HS, Monga V, Rao G, Rao AUK. Automated discrimination of lower and higher grade gliomas based on histopathological image analysis. J Pathol Inform. 2015Mar24; 6:15. https://doi.org/10.4103/2153-3539.153914
    [Google Scholar]
  37. Jin L, Shi F, Chun Q, Chen H, Ma Y, Wu S, et al.. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers. NeuroOncol. 2021Jan; 23:(1):44–52. https://doi.org/10.1093/neuonc/noaa163
    [Google Scholar]
  38. Chaulagain D, Smolanka V, Smolanka A. Diagnosis and management of astrocytoma: a literature review. Int Neurol J. 2022; 18:(1):Article 1. https://doi.org/10.22141/2224-0713.18.1.2022.925
    [Google Scholar]
  39. Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, et al.. Diagnostic accuracy of anti-3-[18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging. 2024Jan; 51:(2):496–509. https://doi.org/10.1007/s00259-023-06437-4
    [Google Scholar]
  40. Kikuchi K, Togao O, Yamashita K, Momosaka D, Kikuchi Y, Kuga D, et al.. Comparison of diagnostic performance of radiologist- and AI-based assessments of T2-FLAIR mismatch sign and quantitative assessment using synthetic MRI in the differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, IDH-mutant and 1p/19q-codeleted. Neuroradiology. 2024Mar; 66:(3):333–41. https://doi.org/10.1007/s00234-024-03288-0
    [Google Scholar]
  41. Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol. 2024Mar29; 8:(1):80. https://doi.org/10.1038/s41698-024-00575-0
    [Google Scholar]
  42. Antonelli M, Poliani PL. Adult type diffuse gliomas in the new 2021 WHO classification. Pathologica. 2022Dec; 114:(6):397–409. https://doi.org/10.32074/1591-951X-823
    [Google Scholar]
  43. Rudà R, Capper D, Waldman AD, Pallud J, Minniti G, Kaley TJ, et al.. EANO – EURACAN – SNO Guidelines on circumscribed astrocytic gliomas, glioneuronal, and neuronal tumors. NeuroOncol, 2022Dec1; 24:(12):2015–34. https://doi.org/10.1093/neuonc/noac188
    [Google Scholar]
  44. Brown PD, Buckner JC, O’Fallon JR, Iturria NL, Brown CA, O’Neill BP, et al.. Adult patients with supratentorial pilocytic astrocytomas: a prospective multicenter clinical trial. Int J Radiat Oncol Biol Phys. 2004Mar; 58:(4):1153–60. https://doi.org/10.1016/j.ijrobp.2003.09.020
    [Google Scholar]
  45. Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, Warnatz HJ, et al.. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet. 2013Aug; 45:(8):927–32. https://doi.org/10.1038/ng.2682
    [Google Scholar]
  46. Del Bufalo F, Ceglie G, Cacchione A, Alessi I, Colafati GS, Carai A, et al.. BRAF V600E inhibitor (Vemurafenib) for BRAF V600E mutated low grade gliomas. Front Oncol. 2018Nov; 8:526. https://doi.org/10.3389/fonc.2018.00526
    [Google Scholar]
  47. Lee C, Byeon Y, Kim GJ, Jeon J, Hong CK, Kim JH, et al.. Exploring prognostic factors and treatment strategies for long-term survival in pleomorphic xanthoastrocytoma patients. Sci Rep. 2024Feb26; 14:(1):4615. https://doi.org/10.1038/s41598-024-55202-6
    [Google Scholar]
  48. Jakola AS, Skjulsvik AJ, Myrmel KS, Sjåvik K, Unsgård G, Torp SH, et al.. Surgical resection versus watchful waiting in low-grade gliomas. Ann Oncol. 2017Aug1; 28:(8):1942–8. https://doi.org/10.1093/annonc/mdx230
    [Google Scholar]
  49. Kessler T, Ito J, Wick W, Wick A. Conventional and emerging treatments of astrocytomas and oligodendrogliomas. J Neurooncol. 2023May; 162:(3): 471–8. https://doi.org/10.1007/s11060-022-04216-z
    [Google Scholar]
  50. van den Bent MJ, Tesileanu CMS, Wick W, Sanson M, Brandes AA, Clement PM, et al.. Adjuvant and concurrent temozolomide for 1p/19q non-co-deleted anaplastic glioma (CATNON; EORTC study 26053-22054): second interim analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 2021Jun; 22:(6):813–823. https://doi.org/10.1016/S1470-2045(21)00090-5
    [Google Scholar]
  51. Reardon DA, Rich JN, Friedman HS, Bigner DD. Recent advances in the treatment of malignant astrocytoma. J Clin Oncol. 2016Mar10; 24:(8):1253–65. https://doi.org/10.1200/JCO.2005.04.5302
    [Google Scholar]
  52. Nie D, Lu J, Zhang H, Adeli E, Wang J, Yu Z, et al.. Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep. 2019Jan31; 9:(1):1103. https://doi.org/10.1038/s41598-018-37387-9
    [Google Scholar]
  53. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, et al.. Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. NeuroOncol. 2015Mar; 18:(3):17–25. https://doi.org/10.1093/neuonc/nov127
    [Google Scholar]
  54. Karschnia P, Vogelbaum MA, van den Bent M, Cahill DP, Bello L, Narita Y, et al.. Evidence-based recommendations on categories for extent of resection in diffuse glioma. Eur J Cancer. 2021May; 149:23–33. https://doi.org/10.1016/j.ejca.2021.03.002
    [Google Scholar]
  55. Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al.. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics. 2015Apr; 13:(2):209–25. https://doi.org/10.1007/s12021-014-9245-2
    [Google Scholar]
  56. Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW. State of the art: machine learning applications in glioma imaging. Am J Roentgenol. 2019Jan; 212:(1):26–37. https://doi.org/10.2214/AJR.18.20218
    [Google Scholar]
  57. Li Z, Wang Y, Yu J, Shi Z, Guo Y, Chen L, et al.. Low-grade glioma segmentation based on CNN with fully connected CRF. J Healthc Eng. 2017; 2017:9283480. https://doi.org/10.1155/2017/9283480
    [Google Scholar]
  58. Sengupta A, Agarwal S, Gupta PK, Ahlawat S, Patir R, Gupta RK, et al.. On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images. Eur J Radiol. 2018Sep; 106:199–208. https://doi.org/10.1016/j.ejrad.2018.07.018
    [Google Scholar]
  59. Bonte S, Goethals I, Van Holen R. Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Comput Biol Med. 2018Jul; 98:39–47. https://doi.org/10.1016/j.compbiomed.2018.05.005
    [Google Scholar]
  60. Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol. 2023Jun; 91:110–123. https://doi.org/10.1016/j.semcancer.2023.03.006
    [Google Scholar]
  61. Elkhader J, Elemento O. Artificial intelligence in oncology: from bench to clinic. Semin Cancer Biol. 2022Sep; 84:113–28. https://doi.org/10.1016/j.semcancer.2021.04.013
    [Google Scholar]
  62. Neves BJ, Agnes JP, Gomes M do N, Donza MRH, Gonçalves RM, Delgobo M, et al.. Efficient identification of novel anti-glioma lead compounds by machine learning models. Eur J Med Chem. 2020Mar1; 189:111981. https://doi.org/10.1016/j.ejmech.2019.111981
    [Google Scholar]
  63. Farhy C, Hariharan S, Ylanko J, Orozco L, Zeng FY, Pass I, et al.. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. Elife. 2019Oct22; 8:e49683. https://doi.org/10.7554/eLife.49683
    [Google Scholar]
  64. Shi R, Pan P, Lv R, Ma C, Wu E, Guo R, et al.. High-throughput glycolytic inhibitor discovery targeting glioblastoma by graphite dots–assisted LDI mass spectrometry. Sci Adv. 2022Feb18; 8:(7):eabl4923. https://doi.org/10.1126/sciadv.abl4923
    [Google Scholar]
  65. Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Piñeiro JF, et al.. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors (Basel). 2019Feb; 19:(4):920. https://doi.org/10.3390/s19040920
    [Google Scholar]
  66. Franco D, Granata V, Fusco R, Grassi R, Nardone V, Lombardi L, et al.. Artificial intelligence and radiation effects on brain tissue in glioblastoma patient: preliminary data using a quantitative tool. Radiol Med. 2023Jul; 128:(7):813–27. https://doi.org/10.1007/s11547-023-01655-0
    [Google Scholar]
  67. Fan H, Luo Y, Gu F, Tian B, Xiong Y, Wu G, et al.. Artificial intelligence-based MRI radiomics and radiogenomics in glioma. Cancer Imaging. 2024Mar; 24:(1):36. https://doi.org/10.1186/s40644-024-00682-y
    [Google Scholar]
  68. Hu X, Wong KK, Young GS, Guo L, Wong ST. Support vector machine multiparametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging. 2011Feb; 33:(2):296–305. https://doi.org/10.1002/jmri.22432
    [Google Scholar]
  69. George E, Flagg E, Chang K, Bai HX, Aerts HJ, Vallières M, et al.. Radiomics-based machine learning for outcome prediction in a multicenter phase II study of programmed death-ligand 1 inhibition immunotherapy for glioblastoma. Am J Neuroradiol. 2022May; 43:(5):675–81. https://doi.org/10.3174/ajnr.A7488
    [Google Scholar]
  70. Belue MJ, Harmon SA, Chappidi S, Zhuge Y, Tasci E, Jagasia S, et al.. Diagnosing progression in glioblastoma—tackling a neuro-oncology problem using artificial-intelligence-derived volumetric change over time on magnetic resonance imaging to examine progression-free survival in glioblastoma. Diagnostics (Basel). 2024Jun28; 14:(13):1374. https://doi.org/10.3390/diagnostics14131374
    [Google Scholar]
  71. Vollmuth P, Foltyn M, Huang RY, Galldiks N, Petersen J, Isensee F, et al.. Artificial intelligence (AI)-based decision support improves reproducibility of tumor response assessment in neuro-oncology: an international multi-reader study. NeuroOncol. 2023Mar14; 25:(3):533–43. https://doi.org/10.1093/neuonc/noac189
    [Google Scholar]
  72. Venkatesan D, Elangovan A, Winster H, Pasha MY, Abraham KS, Satheeshkumar J, et al.. Diagnostic and therapeutic approach of artificial intelligence in neuro-oncological diseases. Biosensors and Bioelectronics: X, 2022Sep; 11:100188. https://doi.org/10.1016/j.biosx.2022.100188
    [Google Scholar]
  73. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al.. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical Image Analysis, 2017Feb; 36:61–78. https://doi.org/10.1016/j.media.2016.10.004
    [Google Scholar]
/content/journals/10.5339/avi.2025.3
Loading
/content/journals/10.5339/avi.2025.3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error