1887
Volume 4(2023) Number 1
  • EISSN: 2708-0463

Abstract

في هذا البحث، احتُسبت كثافة الذرات غير المستقرة في محاكاة التفريغ الومضي في التيار المستمر لغاز الكريبتون (Kr) عند الضغوط0.5 ، و1.5 و1.5(Torr)، والجهود المطبقة كانت200 و300 و340(Volt). التباعد بين القطبين المصعد والمهبط يساوي 1 (cm). العمليات الكيمائية التي أُخذت في الاعتبار في هذه الدراسة هي الإشعاع والتأين الكيميائي والتأين التدريجي والإثارة وإزالة الإثارة والاصطدام المرن. القيم القصوى لكثافة الذرات غير المستقرة التي سُجلت في هذه الدراسة تراوح بين 108×0.54و 109×2.47(cm-3)،ومن ثم، يمكن استخدام هذا النموذج ليحلّ محلّ قياسات مطياف الكتلة.

In this paper, we have calculated the metastable atom density in krypton by a fluid model for gas pressure equal to 0.5, 1 and 1.5 Torrs, and the applied voltages were 200, 300 and 340 volts. The inter-electrodes spacing was equal to 1 cm. The chemical processes that were considered in this study were radiation, chemo-ionization, stepwise ionization, both ionization and excitation of the ground atom, and de-excitation and elastic collision. The model was verified experimentally and theoretically. The maximum values for the metastable atom density that was registered in this study were equal between 0.54 x 108 and 2.47 x 109cm-3. Consequently, this model can be used to replace mass spectrometry measurements.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2023.5
2023-05-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2023/1/ajsr.2023.5.html?itemId=/content/journals/10.5339/ajsr.2023.5&mimeType=html&fmt=ahah

References

  1. Vasilyak L M, Polyakov D N, Shumova V V. Glow discharge positive column with dust particles in neon. Contributions to Plasma Physics. 2013; 53:(4–5):432–435.
    [Google Scholar]
  2. Hechelef B, Bouchikhi A. Identification of the normal and abnormal glow discharge modes in a neon-xenon gas mixture at low pressure. Plasma Science and Technology. 2018Sep 4; 20:(11):115401.
    [Google Scholar]
  3. Hechelef B, Bouchikhi A. Current–voltage characteristics in a helium–argon gas mixture glow discharge at low pressure. Acta Physica Polonica A. 2019 Dec 1; 136:(6):855–860.
    [Google Scholar]
  4. Marković V Lj, Gocić S R, Stamenković S N,Petrović Z Lj. Study of relaxation kinetics in argon afterglow by the breakdown time delay measurements. Physics of Plasmas. 2005 Jul 20; 12:(7):073502.
    [Google Scholar]
  5. Bouchikhi A. Modeling of a DC glow discharge in a neon–xenon gas mixture at low pressure and with metastable atom densities. Plasma Science and Technology. 2017 Jul 26; 19:(9):095403. DOI 10.1088/2058-6272/aa74ad
    [Google Scholar]
  6. Donkó Z, Hartmann P, Kutasi K. On the reliability of low-pressure DC glow discharge modelling. Plasma Sources Science and Technology. 2006 Feb 22; 15:(2):178.
    [Google Scholar]
  7. Bouchikhi A. Parametric study on the DC microdischarge in a 90%Helium–10%Xenon gas mixture at intermediate pressure. Indian Journal of Physics. 2022 Apr; 96:(5):1443–1452.
    [Google Scholar]
  8. Meyyappan M, Kreskovsky J P L. Glow discharge simulation through solutions to the moments of the Boltzmann transport equation. Journal of Applied Physics. 1990 Aug 15; 68:(4):1506–1512.
    [Google Scholar]
  9. Bouchikhi A. Physical proprieties of DC glow discharges in a neon–argon gas mixture. Canadian Journal of Physics. 2018; 96:(1):62–70.
    [Google Scholar]
  10. Rafatov I,Bogdanov E A, Kudryavtsev A A. ccount of nonlocal ionization by fast electrons in the fluid models of a direct current glow discharge. Physics of Plasmas. 2012Sep 14; 19:(9):093503.
    [Google Scholar]
  11. Bouchikhi A. Nonlocal ionization theory and secondary electron emission coefficient: Application in helium and neon DC microdischarge at high pressure. IEEE Transactions on Plasma Science. 2019 Aug; 20; 47:(9):4260–4267.
    [Google Scholar]
  12. Eremin D, Hemke T, Mussenbrock T. A new hybrid scheme for simulations of highly collisional RF-driven plasmas. Plasma Sources Science and Technology. 2015 Dec; 15; 25:(1):015009.
    [Google Scholar]
  13. Bouchikhi A. Dielectric barrier discharge effect on capacitively coupled RF argon glow discharge. Indian Journal of Pure & Applied Physics. 2022 Feb; 16; 60:(2):163–170.
    [Google Scholar]
  14. Bouchikhi A. Effect of pressure on argon dielectric barrier discharge. Acta Physica Polonica A. 2022 Aug; 1; 142:(2):249.
    [Google Scholar]
  15. Stankov M N, Petković M D, Marković V L, Stamenković S N, Jovanović A P. The applicability of fluid model to electrical breakdown and glow discharge modeling in argon. Chinese Physics Letters. 2015 Feb; 1; 32:(2):025101.
    [Google Scholar]
  16. Bouchikhi A. Study of the neon dielectric barrier discharge on a capacitively coupled radio frequency at low pressure with metastable atom density: Effect of the pressure. Ukrainian Journal of Physics. 2022 Nov; 26; 67:(7):504.
    [Google Scholar]
  17. Bouchikhi A, Bouchikhi A. Calculation of the surface charge concentration on the argon’s dielectric barrier discharge: Effect of the amplitude voltage. Indian Journal of Pure & Applied Physics. 2022 Mar; 11; 60:(11):933–940.
    [Google Scholar]
  18. Becker M M, Loffhagen D. Enhanced reliability of drift-diffusion approximation for electrons in fluid models for non thermal plasmas. AIP Advances. 2013; 3:(1):012108.
    [Google Scholar]
  19. Bouchikhi A. Parametric studies of CCRF in Ar on 1D model: Effect of pressure and dielectric layers. Fusion Science and Technology. 2023 Jan; 16; 79:168.
    [Google Scholar]
  20. Sigeneger F, Winkler R. Nonlocal transport and dissipation properties of electrons in inhomogeneous plasmas. IEEE Transactions on Plasma Science. 1999 Oct; 27:(5):1254–1261.
    [Google Scholar]
  21. Van Gaens W, Bogaerts A. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal of Physics D: Applied Physics. 2013 Jun; 18; 46:(27):275201.
    [Google Scholar]
  22. Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology. 2005 Oct; 5; 14:(4):722.
    [Google Scholar]
  23. About the Plasma Data Exchange Project. Lxcat. ND. http://nl.lxcat.net/home/
  24. Vriens L, Smeets A H M. Cross-section and rate formulas for electron-impact ionization, excitation, deexcitation, and total depopulation of excited atoms. Physical Review A. 1980 Sep 1; 22:(3):940.
    [Google Scholar]
  25. Kolokolov N B, Kudrjavtsev A A, Blagoev A B. Interaction processes with creation of fast electrons in the low temperature plasma. Physica Scripta. 1994 Oct; 1; 50:(4):371.
    [Google Scholar]
  26. John C M. Two-photon resonant, stimulated processes in krypton and xenon*. Proceeding of the 4 (ILS-IV). 2–6 October, 1988, Atlanta, Georgia; 1988. Available from: www.osti.gov/scitech/servlets/purl/6609860.
    [Google Scholar]
  27. Alili T, Bouchikhi A, Rizouga M. Investigations of argon and neon abnormal glow discharges in the presence of metastable atom density with fluid model. Canadian Journal of Physics. 2016; 94:(8):731–739.
    [Google Scholar]
  28. Alili T, Bouchikhi A, Rizouga M. Electrical characteristics of an argon glow discharge in the presence of metastable atom density. International Review of Electrical Engineering. 2016; 11: 200.
    [Google Scholar]
  29. Alili T, Bouchikhi A, Rizouga M. Neon spatio-temporal distributions in a DC glow discharge. Przeglad Eektrotechniczny. 2017; 93:(2):188.
    [Google Scholar]
  30. Becker MM, Loffhagen D, Schmidt W. A stabilized finite element method for modeling of gas discharges. Computer Physics Communications. 2009 Aug; 1; 180:(8):1230–1241.
    [Google Scholar]
  31. Bouchikhi A, Hamid A. 2D DC subnormal glow discharge in argon. Plasma Science and Technology. 2010 Feb 1; 12:(1):59.
    [Google Scholar]
  32. Scharfetter D L, Gummel H K. Large-signal analysis of a Silicon Read diode oscillator. IEEE Transactions on Electron Devices. 1969 Jan; 16 (1):64–77.
    [Google Scholar]
  33. Palkina L A, Smirnov B M, Chibisov M I. Diffusion of metastable inert gas atoms in the same gas. Soviet Physics JETP. 1969 Jul; 29:(1):187–190.
    [Google Scholar]
  34. Ellis H W, Pai R Y, McDaniel E W, Mason E A, Viehland L A. Transport properties of gaseous ions over a wide energy range. Atomic Data and Nuclear Data Tables. 1976 Mar; 1; 17:(3):177–210.
    [Google Scholar]
  35. Bouchikhi A. Two-dimensional numerical simulation of the DC glow discharge in the normal mode and with Einstein’s relation of electron diffusivity. Plasma Science and Technology. 2012 Nov; 1; 14:(11):965.
    [Google Scholar]
  36. Bouchikhi A. Proposition of a new geometry of the electrodes in a particular discharge. Indian Journal of Physics. 2020 Mar; 94:(3):353–360.
    [Google Scholar]
  37. Bouchikhi A. 2D fluid approaches of a DC normal glow discharge: Current densities. Przeglad Eektrotechniczny. 2016 Jun; 5; 92:(6):149–153.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2023.5
Loading
/content/journals/10.5339/ajsr.2023.5
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error