Volume 4(2023) Number 1
  • EISSN: 2708-0463


تعتبر الكواشف الإشعاعية إحدى أهم الأدوات الفعالة للكشف عن الآثار الإشعاعية وتفادي أخطارها، وقد صُممت تقنياً على أساس الزمن التراكمي للآثار الإشعاعية. تستخدم الكواشف الإشعاعية في حالات السلم واتّباع إجراءات وبروتوكولات الحماية والأمان النووي، وحدود الجرعة السنوية المسموح فيها للعمال والجمهور على حد سواء من الوكالات والهيئات الدولية المختصة في الآثار النووية وحماية البيئة، كما في الحوادث النووية.

حديثاً، تتيح التقنيات البرمجية الحديثة الذكية إمكانية الكشف الآني عن التعرض الإشعاعي، ومن ثمّ إمكانية استخدامها للإنذار المبكر والتوقع المستقبلي بالجرعة الإشعاعية المحتملة وتفادي أخطارها.

تتناول هذه الورقة البحثية الطرق النظرية لتحديث طرائق الكشف التقنية الإشعاعية باستخدام الألواح الرقمية الذكية واستخدامها بوصفها إنذاراً مبكراً وكواشف نووية ذكية، وفي النتيجة الوصول إلى تجديد معايير وحدود الجرعة السنوية الإشعاعية دولياً على أساس تقدير الجرعة اللحظية والآنية، وتحديث قواعد الوقاية والحماية الإشعاعية: أكثر حماية شخصية (More Personal Protection, MPP)، وأقل ضرراً وخطراً بيئياً (Less Enivrement Risk, LER).

تشير النتائج البحثية المستخلصة إلى أهمية التوصية بإدراج التقنيات الذكية في تحديث الكواشف الإشعاعية والقواعد الدولية في الوقاية الإشعاعية، واعتمادها من الوكالات والهيئات المختصة.

Radioactive detectors are considered one of the most effective tools for detecting radioactive effects and avoiding their dangers. They have been technically designed on the basis of the cumulative time of radioactive effects. The rules of procedures and protocols for nuclear protection, safety, and the annual limits intake for both workers and the public, have been established carefully by international agencies concerned about nuclear effects and environmental protection.

Recently, the development of smart technologies has good possibility to update the radioactive detectors and to design smart detectors. Smart detectors can be used for spontaneous detection of radiation exposure and as an early warning detection.

In this paper, the theoretical methods for updating radiological detection methods using smart digital sheets have been designed. As a result, the international standard rules and limits of the annual intake were renewed to allow updating the rules of radiation protection: More Personal Protection-MPP, and less Environment Risk-LER.

The results indicate the importance of recommending using smart technologies to modernize the radiation detectors and the international protection rules.


Article metrics loading...

Loading full text...

Full text loading...



  1. WHO. Global report on Fukushima nuclear accident details health risks [Internet]; 2013. Available from: www.who.int.
  2. Benzi M, Shiloh M. Getting started with Ardunio. 3rd ed. USA: Maker Media and Sebastopol Inc; 2014. p. 262.
    [Google Scholar]
  3. Bregman D. Smart home intelligence – the eHome that learns. International Journal of Smart Home, Korea. 2010; 4:(4):35–46.
    [Google Scholar]
  4. IAEA. Addressing safety of smart devices for use in nuclear power plants. IAEA Office of Public Information and Communication, 3/2020; 2020.
  5. IEAE. No. NR-T-3.31, Challenges and approaches for selecting, assessing and qualifying commercial industrial digital instrumentation and control equipment for use in nuclear power plant applications. Vienna: IAEA; 2020. p. 81
  6. IEAE. No. NR-T-3.29, Application of wireless technologies in nuclear power plant instrumentation and control systems. Vienna: IAEA; 2020. p. 77.
  7. ICRP-60. 1990 recommendations of the international commission on radiological protection. The International Commission on Radiological Protection. Oxford: Pergamon Press; 1990. p. 211.
  8. ICRP-92. Relative biological effectiveness (RBE), quality factor (Q), and radiation weighting factor (WR). The International Commission on Radiological Protection. Oxford: Pergamon Press; 2003. p. 121.
    [Google Scholar]
  9. Paquet F, Etherington G,Bailey MR, Leggett RW, Lipsztein J, Bolch W, et al.. ICRP Publication 130: Occupational intakes of radionuclides: Part 1. Annals of the ICRP. 2015; 44:(2):188.
    [Google Scholar]
  10. IAEA. International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Vienna: IAEA; 1996. p. 322.
  11. IAEA. Quality assurance for radioactivity measurmenet in nuclear medicine, Technical Reports no. (454). Vienna: IAEA; 2006. p. 96.
  12. USACE. Safety and health requirments. Washington, USA: US Army Corps of Engineers; 2013 [cited 2020 Feb 1]. p. 930. Available from: https://bit.ly/39fwpNA
  13. McCollough CH, Schueler BA. Calculation of effective dose. Medical Physics. 2000; 27:(5):828–837.
    [Google Scholar]
  14. WHO. Depleted uranium: Sources, exposure and health effects. Geneva: Department of Protection of the Human Environment, WHO; 2001. p. v.
  15. ICRP-60. 1990 recommendations of the International Commission on Radiological protection. The International Commission on Radiological Protection. Oxford: Pergamon Press; 1990. pp. 84–85.
  16. فؤاد، ليلى فكري وآخرون. البرنامج التدريبي الأساسي للوقاية من الإشعاعات المؤينة، هيئة الطاقة الذرية المصرية، القاهرة، مصر،.2005 ص 260-265.
  17. Doin-Schwarz C, Evans S, Geist E, Harold S W, Koym V R, Savitz Sc, andThrall L. Technological from the Fukushima Dailchi Accident. Santa Monica, Galif: RAND Co., National Defense Research Institute; 2016. p. 102.
    [Google Scholar]
  18. Lochard J, Bogdevitch I, Gallego E, Hedemann-Jensen P, McEwan A, Nisbet A, Oudiz A, Schneider T, Strand P, Carr Z, Janssens A, andLazo T. ICRP-111. Annals of ICRP. 2009; 39:(3):74.
  19. IAEA. The interface between safety and security at nuclear power plants. Vienna: International Nuclear Safety Group INSAG-24; 2010.
  20. Minder W, Osborn SB. Personal monitoring services. 5. WHO; 1980. p. 54.
  21. Eakins S, Hager L G, andTanner R J. Calibration of thermoluminescence and film dosimeters for skin doses from high-activity microparticles. Radiation Protection Dosimetry, 2016; 170:(1–4):173–176.
    [Google Scholar]
  22. Cember H. Radiation instruments: 2001 Health Physics Society, summer school proceedings. In: Kathren RL, editor. Ionization radiation and quantities and units. Medical Physics Publishing, University of Findly; 2001.
    [Google Scholar]
  23. Muhammad I A, Mohd H R, Rosdiadee N, Faizal M, Asma S, andNor F A. Ionizing radiation monitoring technology at the verge of Internet of Things. Sensors. 2021;21:7629.
    [Google Scholar]
  24. Severance Ch R. Massimo Banzi: Building Arduino. Computer, 2014; 47:(1):11–12.
    [Google Scholar]
  25. Mellal I, Laghrouche M, andTien Bui H. Field programmable gate array (FPGA) respiratory monitoring system using a flow microsensor and an accelerometer. Measurement Science Review, Slovak. 2017; 17:(2):61–67.
    [Google Scholar]
  26. Smith AG. Introduction to Ardunio: A piece of cake. Amazon: Create Space Independent Publishing Platform; 2011. p. 172.
    [Google Scholar]
  27. ARDUINO101 Datasheet. NAIS. Matsushita Electric Works; 2019 [cited 2020 Feb 15]. Available from: https://bit.ly/34ID6rT
  28. ARD10012CQ and ARDUINO101 Datasheet. NAIS. Japan: Matsushita Electric Works; 2019. 8.
  29. ESP 8266EX Datasheet V. 6.0. Espressif Systems. Shanghai, China; 2018 [cited 2020 Feb 15]. Available from: https://bit.ly/3ciGbAg
  30. Dobrica S. International Nuclear Information System (INIS): 50 years of successful contribution to nuclear science and society. Grey Journal. 2021; 17:(3):171–175.
  31. Arab Democratic Center – ADC. Nuclear security and environmental protection conference; 2021. Available from: https://democraticac.de/?p=74953

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error