1887
Volume 4(2023) Number 1
  • EISSN: 2708-0463

Abstract

أجري البحث في محطة بحوث ستخيرس التابعة لمركز البحوث العلمية الزراعية في اللاذقية-سوريا لعام 2020، لدراسة تأثير نوعين من الاسمدة الآزوتية وهما سلفات الأمونيوم [(NH)SO] ونترات البوتاسيوم [KNO]) على معايير النمو والإنتاجية لصنفين من الذرة الصفراء (صنف دينا F1 وصنف فيحاء) المزروعين في تربة كلسية بالإضافة لمعاملة الشاهد بدون اضافة للآزوت وبمعدل ثلاث مكررات لكل معاملة، حيث صممت التجربة بنظام تصميم القطع المنشقة (Split Plots)؛ وبلغ عدد القطع التجريبية 18 قطعة. أظهرت النتائج تفوق الصنف دينا F1 (صنف أجنبي) على الصنف فيحاء (صنف محلي) من حيث ارتفاع النبات وخلال مراحل النمو المختلفة وأيضا في متوسط الانتاجية. وأن التسميد الآزوتي قد أثر في الصفات المدروسة بشكل معنوي حيث تفوقت معاملة سلفات الأمونيوم على باقي المعاملات في ارتفاع النباتات والوزن الجاف وكذلك في متوسط الإنتاجية للعرانيس الطازجة. كما بينت نتائجنا أن أعلى إنتاجية للعرانيس كانت في معاملة سلفات الأمونيوم والصنف دينا F1 وقد بلغت الإنتاجية 14.04 طن/هـ.

The research was conducted at Stekhris Research Station affiliated to the Agricultural Scientific Research Center in Lattakia - Syria for the year 2020, to study the effect of two types of nitrogen fertilizers (ammonium sulfate [NH)SO] and potassium nitrate [KNO]) on the growth and productivity parameters of two cultivars of yellow corn (Dina cultivar F1 and Fayhaa cultivars) grown in calcareous soil. In addition to the control treatment without the addition of nitrogen, at a rate of three replications for each treatment, as the experiment was designed with a Split Plots system and the number of experimental plots was 18 Plot.

The results showed the superiority of the cultivar Dina F1 (a foreign variety) over the cultivar Fayhaa (a local variety) in terms of plant height and during the different stages of growth as well as in average productivity. Moreover, the nitrogen fertilization had a significant effect on the studied traits, as the ammonium sulfate treatment was superior to the rest of the treatments in plant height and dry weight, as well as in the average productivity of fresh earwigs. Our results also showed that the highest yield of marigolds was in ammonium sulphate treatment and Dina F1, with productivity reaching (14.04) tons/ha.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2023.4
2023-04-30
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2023/1/ajsr.2023.4.html?itemId=/content/journals/10.5339/ajsr.2023.4&mimeType=html&fmt=ahah

References

  1. Chen Y, Barker P. Iron nutrition of plants in calcareous soils. Advances in Agronomy. 1982; 35:217–240.
    [Google Scholar]
  2. FAO SOIL PORTA. Calcareous soils. Food and Agriculture Organization of the United Nations; 2016.
  3. Marschner H. Mineral nutrition of higher plants. 2nd ed. London: Acadimic Press; 1995.
    [Google Scholar]
  4. Hagin J, Tucker B. Fertilization of dry land and irrigated soils. Advanced Series in Agricultural Sciences. 1982; 164:(6): 793-802.
    [Google Scholar]
  5. Garcia M, Daverede C, Gallego P, Toumi M. Effect of various potassium-calcium ratios on cation nutrition of grape grown hydroponically Journal of Plant Nutrition. 1999; 22:417–425.
    [Google Scholar]
  6. Cystic MH, Gluhic D, Coga L, Petek M, Gošćak I. Vine plant chlorosis on unstructured calcareous soils and leaf Ca, Mg and K content. VII. Alps-Adria Scientific Workshop Stara Lesna, Slovakia; 2008.
    [Google Scholar]
  7. Ksouri R. Gharsalli M, Lachaal M. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency Journal of Plant Physiology. 2005;162:335–341.
    [Google Scholar]
  8. Boxma R. Bicarbonate as the most important soil factor in lime-induced chlorosis in the Netherlands Plant Soil. 1972; 37:2:233–243.
    [Google Scholar]
  9. Mengel K. Iron availability in plant tissues-iron chlorosis on calcareous soils Plant Soil. 1994; 165:2:275–283.
    [Google Scholar]
  10. Wallace A. Effect of nitrogen fertilizer and nodulation on lime‐induced chlorosis in soybeans Journal of Plant Nutrition. 1982; 5:(4–7):363–368.
    [Google Scholar]
  11. FAO SOILS PORTA. Calcareous soils. Food and Agriculture Organization of the United Nations; 2018.
  12. Jules J. Strategy of crop production Chapter 16: An introduction to world crops. Crop Sci. 1974.
    [Google Scholar]
  13. Vidal EA, Gutierrez RA. A systems views of nitrogen nutrient and metabolite responses in Arabidopsis Plant Biology. 2008; 11:5:521–529.
    [Google Scholar]
  14. Tillman D. Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices Proceedings of the National Academy of Sciences of the United States of America. 1999;96:5995–6000.
    [Google Scholar]
  15. Obreza TA, Alva AK, Calvert DV. Citrus fertilizer management on calcareous soil University of Florida; 1993.
    [Google Scholar]
  16. Callot G. La truffe, la terre, la vie. Versailles: INRA; 1999 p. 210.
    [Google Scholar]
  17. Heller R. Physiolgie Vegetable; 1- nutrition Abreges Masson 3eme edition; 1984 345.
    [Google Scholar]
  18. Bloom AJ. Ammonium and nitrate as nitrogen sources for plant growth ISI Atlas of Science-Animal & Plant Sciences. 1988;1:55–59.
    [Google Scholar]
  19. Wolt JD. Soil solution chemistry: Applications to environmental science and agriculture John Wiley and Sons;1994.
    [Google Scholar]
  20. Khalil N, Bonneau M, Leyval C, Guillet B. Influence du type de nutrition azotee sur le declenchement de la chlorose du sapin de nordmann (Abies nordmanniana, spach, 1842). Annales des Sciences forestieres, France. 1989; 49:325–343.
    [Google Scholar]
  21. Zhao X, Guihong B, Harkess RL. Effects of different NH4:NO3 ratios on growth and nutrition uptake in Iris germanica ‘Immortality’ Hortscience. 2016; 51:8:1045–1049.
    [Google Scholar]
  22. Smiley RW. Rhizosphere pH as influenced by plants, soils, and nitrogen fertilizers. Soil Science Society of America Journal. U.S.A. 1974; 38:(5):795–799.
    [Google Scholar]
  23. Bolan NS, Hedley MJ, White RE. Process of acidification during nitrogen cycling with emphasis on legume based pasture. Plant and Soil 1991;134:53–63.
    [Google Scholar]
  24. Gahoonia TS, Nielsen NE. The effect of root-induced pH depletion of inorganic and organic phosphorus in the rhizosphere Plant and Soil. 1992; 143:185–191.
    [Google Scholar]
  25. Hinsinger P, Plassard C, Tang C, Jaillard B. Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: A review Plant Soil. 2003;248:43–59.
    [Google Scholar]
  26. Tang C, Conyes MK, Nuruzzaman M, Poile GJ, Liu DL. Biological amelioration of subsoil acidity through managing nitrate uptake by wheat crops Plant and Soil. 2011; 338:(1):383–397. https://doi.org/10.1007/s11104-010-0552-6
    [Google Scholar]
  27. Marschner P. Mineral nutrition of higher plants 3rd ed. London: Academic Press. 2012.
    [Google Scholar]
  28. Purseglove JW. Tropical crop Monocotyledons. London: Longmans; 1972. pp. 300–333.
    [Google Scholar]
  29. Qingfeng M, Chen XP, Zhang FS, Cao MH, Cul ZL, Bal JS, Yue SC, Chen SY, Muller T. In-season root-zone nitrogen management strategies for improving nitrogen use efficiency in high-yielding maize production in China Pedosphere 2012; 22:(3): 294–303.
    [Google Scholar]
  30. Sherif AEA, El-hedek KS, Abdgwad SHA. Impact of bio-stimulates and some different nitrogen sources on maize and wheat productivity in calcareous soil Journal of Soil Sciences and Agricultural Engineering. 2019; 10:6:337–349.
    [Google Scholar]
  31. Alzoghbi MM, Alosani AA, Dergham H. Methods of soil, plant, water, and fertilizer analysis. Syria: Ministry of Agriculture and Agrarian Reform – General Authority for Scientific Agricultural Research. 2013 (in Arabic).
    [Google Scholar]
  32. Imran H, Khan FS, Bhutto NN. A study of the application of HA in the presence of biofertilizer along with P to see if the P use efficiency can be improved Frontiers of Agriculture and Food Technology. 2015;3:298–303.
    [Google Scholar]
  33. Ritchie SW, Hanway JJ, Benson GO. How a corn plant develops. Iowa State University of Science and Technology Cooperative Extension Service. Special Report Number: 48, 1993. p.21.
    [Google Scholar]
  34. Koul GG. Effect of sowing methods, nitrogen levels and seed rates on yield and quality of fodder maize (Zea mays L.). M.Sc. Thesis, Faculty of Agriculture, Univ. of Khartoum; 1997.
    [Google Scholar]
  35. Saigusa M, Kasagaya Y, Watarable SK. Ecology of apple of pru (Nieandra physalodes L.) Press and Velvet Leaf (Abudtilon avicennae Garth); 1999.
    [Google Scholar]
  36. Gasim SH. Effect of nitrogen, phosphorus and seed rate on growth, yield and quality of forage maize (Zea mays L.). M.S. Thesis, Faculty of Agriculture, Univ. of Khartoum; 2001.
    [Google Scholar]
  37. Tang C, Rengel Z. Role of plant cation/ anion uptake ratio in soil acidification In Handbook of soil acidity. Boca Raton:CRC; 2003. p. 57–81. https://doi.org/10.1201/9780203912317
    [Google Scholar]
  38. Mils HA, Jones JB. Plant analysis handbook II: A practical sampling, preparation, analysis, and interpretation guide. 2nd ed. Athens, GA: MicroMacro Publishing; 1997.
    [Google Scholar]
  39. Jing J, Ruia Y, Zhanga F, Rengel Z, Shen J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification Field Crops Research. 2010; 119:355–364. doi.org/10.1016/j.fcr.2010.08.005
    [Google Scholar]
  40. Amanullah H. Rate and timing of nitrogen application influence partial factor productivity and agronomic NUE of maize (Zea mays L) planted at low and high densities on calcareous soil in northwest Journal of Plant Nutrition. 2019; 39:5:683–690.
    [Google Scholar]
  41. Sawi SMA. The effect of nitrogen, phosphorus and time of application on growth and yield of maize. Univ. of Khartoum.Sudan; 1993.
    [Google Scholar]
  42. Omara HA. The effect of spacing, nitrogen and phosphorus application on growth and yield of maize (Zea mays L.). M.Sc. Thesis, Univ. of Khartoum, Faculty of Agric; 1989..
    [Google Scholar]
  43. Bloom AJ, Sukrapanna SS, Warner RL. Root respiration associated with ammonium and nitrate absorption and assimilation by barley Plant Physiology. 1992; 99:4:1294–1301.
    [Google Scholar]
  44. George J. Nitrate and ammonium interactions in maize Adelaide: Australian Centre for Plant Functional Genomics; 2014.
    [Google Scholar]
  45. Cox WJ, Reisenauer HM. Growth and ion uptake by wheat supplied with nitrogen as nitrate, or ammonium, or both. Plant and Soil. 1973; 38:363–380.
    [Google Scholar]
  46. Vites FG, Hageman RH. Factors affecting the accumulation of nitrate in soil, water, and plants. Agricultural Research Service, US Department of Agriculture; 1971. Agriculture handbook, No. 413: P. 67. https://handle.nal.usda.gov/10113/CAT88913048
    [Google Scholar]
  47. Zhang F, Niu J, Zhang W, Chen X, Li C, Yuan L, Xie J. Potassium nutrition of crops under varied regimes of nitrogen supply Plant and Soil. 2010; 335: 21–34. https://doi.org/10.1007/s11104-010-0323-4
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2023.4
Loading
/content/journals/10.5339/ajsr.2023.4
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error