1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  • E-ISSN:

Abstract

Abstract

Cardiac malformations, most commonly valve defects, are some of the predominant causes of cardiovascular morbidity and mortality worldwide. Up to a third of all patients with complex congenital heart defects and numerous syndromic conditions, as well as a significant amount of the general population, exhibit valve defects. These observations have not only major implications in infancy; they also have a major impact on the adult population and the growing number of adults with congenital malformations. Over recent years, a large number of Mendelian inheritance patterns and syndromic causes have been identified, shedding light on the importance of genes encoding components of the extracelluar matrix in valve disease. Nevertheless, we still know little about the genetic origin of sporadic and more complex family traits. It is unclear to what extent genetic variations play a role in disease pathogenesis and influences phenotypes rooted in early development. Such knowledge would be greatly beneficial for counseling and treatment of patients. Therefore, this review summarizes the findings in human non-syndromic and syndromic valve disease with a special focus on extracellular matrix proteins, and discusses them in the context of vertebrate valve development.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.9
2011-12-29
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.9.html?itemId=/content/journals/10.5339/ahcsps.2011.9&mimeType=html&fmt=ahah

References

  1. [1]. Hoffman   JI., , Kaplan   S., and Liberthson   RR. . Prevalence of congenital heart disease. . Am Heart J . 2004; ;147: : 425– 439 .
    [Google Scholar]
  2. [2]. Hoffman   JI., and Kaplan   S. . The incidence of congenital heart disease. . J Am Coll Cardiol . 2002; ;39: : 1890– 1900 .
    [Google Scholar]
  3. [3]. Loffredo   CA. . Epidemiology of cardiovascular malformations: prevalence and risk factors. . Am JMed Genet . 2000; ;97: : 319– 325 .
    [Google Scholar]
  4. [4]. Loffredo   CA   et al. Prevalence of congenital cardiovascular malformations among relatives of infantswith hypoplastic left heart, coarctation of the aorta, and d-transposition of the greatarteries. . Am J Med Genet . 2004; ;124A: : 225– 230 .
    [Google Scholar]
  5. [5]. Hinton   RB   et al. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and isgenetically related to bicuspid aortic valve. . J Am Coll Cardiol . 2009; ;53: : 1065– 1071 .
    [Google Scholar]
  6. [6]. Basso   C   et al. An echocardiographic survey of primary school children for bicuspid aortic valve. . Am J Cardiol . 2004; ;93: : 661– 663 .
    [Google Scholar]
  7. [7]. Nistri   S., , Basso   C., , Marzari   C., , Mormino   P., and Thiene   G. . Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. . AmJ Cardiol . 2005; ;96: : 718– 721 .
    [Google Scholar]
  8. [8]. Freed   LA   et al. Mitral valve prolapse in the general population: the benign nature of echocardiographicfeatures in the Framingham heart study. . J Am Coll Cardiol . 2002; ;40: : 1298– 1304 .
    [Google Scholar]
  9. [9]. Roberts   WC., and Ko   JM. . Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adultshaving isolated aortic valve replacement for aortic stenosis, with or withoutassociated aortic regurgitation. . Circulation . 2005; ;111: : 920.
    [Google Scholar]
  10. [10]. Billett   J., , Cowie   MR., , Gatzoulis   MA., , Vonder Muhll   IF., and Majeed   A. . Comorbidity, healthcare utilisation and process of care measures in patients withcongenital heart disease in the UK: cross-sectional, population-based study withcase-control analysis. . Heart . 2008; ;94: : 1194– 1199 .
    [Google Scholar]
  11. [11]. Billett   J., , Majeed   A., , Gatzoulis   M., and Cowie   M. . Trends in hospital admissions, in-hospital case fatality and population mortalityfrom congenital heart disease in England, 1994 to 2004. . Heart . 2008; ;94: : 342– 348 .
    [Google Scholar]
  12. [12]. Pillutla   P., , Shetty   KD., and Foster   E. . Mortality associated with adult congenital heart disease: trends in the USpopulation from 1979 to 2005. . Am Heart J . 2009; ;158: : 874– 879 .
    [Google Scholar]
  13. [13]. Aristotle Historia Animalium. Book VI 3 translated by Beck 1970, (384AD).
  14. [14]. Masic   I. . On occasion of 800th anniversary of birth of Ibn al-Nafis–discoverer of cardiac andpulmonary circulation. . Med Arh . 2010; ;64: : 309– 313 .
    [Google Scholar]
  15. [15]. Clayton M andMuseum of Fine Arts, Houston; Windsor Castle.Leonardo da Vinci: the anatomy of man: drawings from the collection of Her MajestyQueen Elizabeth II. (Museum of Fine Arts; Little Brown and Co.: Houston; Boston,1992).
  16. [16]. Tam   PP., , Parameswaran   M., , Kinder   SJ., and Weinberger   RP. . The allocation of epiblast cells to the embryonic heart and other mesodermallineages: the role of ingression and tissue movement during gastrulation. . Development . 1997; ;124: : 1631– 1642 .
    [Google Scholar]
  17. [17]. Garcia-Martinez   V., and Schoenwolf   GC. . Primitive-streak origin of the cardiovascular system in avian embryos. . Dev Biol . 1993; ;159: : 706– 719 .
    [Google Scholar]
  18. [18]. Saga   Y   et al. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermalcells during mouse gastrulation. . Development . 1996; ;122: : 2769– 2778 .
    [Google Scholar]
  19. [19]. Saga   Y., , Kitajima   S., and Miyagawa-Tomita   S. . Mesp1 expression is the earliest sign of cardiovascular development. . TrendsCardiovasc Med . 2000; ;10: : 345– 352 .
    [Google Scholar]
  20. [20]. Saga   Y   et al. MesP1 is expressed in the heart precursor cells and required for the formation of asingle heart tube. . Development . 1999; ;126: : 3437– 3447 .
    [Google Scholar]
  21. [21]. Bondue   A   et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitorspecification. . Cell Stem Cell . 2008; ;3: : 69– 84 .
    [Google Scholar]
  22. [22]. Schoenebeck   JJ., , Keegan   BR., and Yelon   D. . Vessel and blood specification override cardiac potential in anterior mesoderm. . DevCell . 2007; ;13: : 254– 267 .
    [Google Scholar]
  23. [23]. Prall   OWJ   et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitorspecification and proliferation. . Cell . 2007; ;128: : 947– 959 .
    [Google Scholar]
  24. [24]. Christoffels   VM   et al. Chamber formation and morphogenesis in the developing mammalian heart. . DevBiol . 2000; ;223: : 266– 278 .
    [Google Scholar]
  25. [25]. Brand   T. . Heart development: molecular insights into cardiac specification and earlymorphogenesis. . Dev Biol . 2003; ;258: : 1– 19 .
    [Google Scholar]
  26. [26]. Davis   CL. . The cardiac jelly of the chick embryo. . Anat Rec . 1924; ;27: : 201– 202 .
    [Google Scholar]
  27. [27]. Männer   J., , Wessel   A., and Yelbuz   TM. . How does the tubular embryonic heart work? Looking for the physical mechanismgenerating unidirectional blood flow in the valveless embryonic heart tube. . Dev Dyn . 2010; ;239: : 1035– 1046 .
    [Google Scholar]
  28. [28]. Lee   JS   et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. . Dev Cell . 2006; ;11: : 845– 857 .
    [Google Scholar]
  29. [29]. Greulich   F., , Rudat   C., and Kispert   A. . Mechanisms of T-box gene function in the developing heart. . Cardiovasc Res . 2011; [CrossRef] .
    https://doi.org/10.1093/cvr/cvr112 [Google Scholar]
  30. [30]. Kelly   RG., , Brown   NA., and Buckingham   ME. . The arterial pole of the mouse heart forms from Fgf10-expressing cells inpharyngeal mesoderm. . Dev Cell . 2001; ;1: : 435– 440 .
    [Google Scholar]
  31. [31]. Torlopp   A., , Schlueter   J., and Brand   T. . Role of fibroblast growth factor signaling during proepicardium formation in thechick embryo. . Dev Dyn . 2010; ;239: : 2393– 2403 .
    [Google Scholar]
  32. [32]. Cai   CL   et al. Isl1 identifies a cardiac progenitor population that proliferates prior todifferentiation and contributes a majority of cells to the heart. . Dev Cell . 2003; ;5: : 877– 889 .
    [Google Scholar]
  33. [33]. Laugwitz   KL., , Moretti   A., , Caron   L., , Nakano   A., and Chien   KR. . Islet1 cardiovascular progenitors: a single source for heart lineages?.   Development . 2008; ;135: : 193– 205 .
    [Google Scholar]
  34. [34]. Waldo   K   et al. A novel role for cardiac neural crest in heart development. . J Clin Invest . 1999; ;103: : 1499– 1507 .
    [Google Scholar]
  35. [35]. Jiang   X., , Rowitch   DH., , Soriano   P., , McMahon   AP., and Sucov   HM. . Fate of the mammalian cardiac neural crest. . Development . 2000; ;127: : 1607– 1616 .
    [Google Scholar]
  36. [36]. Männer   J., , Schlueter   J., and Brand   T. . Experimental analyses of the function of the proepicardium using a newmicrosurgical procedure to induce loss-of-proepicardial-function in chick embryos. . Dev Dyn . 2005; ;233: : 1454– 1463 .
    [Google Scholar]
  37. [37]. Cai   C-L   et al. A myocardial lineage derives from Tbx18 epicardial cells. . Nature . 2008; ;454: : 104– 108 .
    [Google Scholar]
  38. [38]. Zhou   B   et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developingheart. . Nature . 2008; ;454: : 109– 113 .
    [Google Scholar]
  39. [39]. Christoffels   VM   et al. Tbx18 and the fate of epicardial progenitors. . Nature . 2009; ;458: : E8– 9 . discussion E9–10 .
    [Google Scholar]
  40. [40]. Rosenthal   N., and Harvey   RP. . Heart Development and Regeneration . Academic; . Amsterdam; Oxford: . 2010; .
    [Google Scholar]
  41. [41]. Person   AD., , Klewer   SE., and Runyan   RB. . Cell biology of cardiac cushion development. . Int Rev Cytol . 2005; ;243: : 287– 335 .
    [Google Scholar]
  42. [42]. Schroeder   JA., , Jackson   LF., , Lee   DC., and Camenisch   TD. . Form and function of developing heart valves: coordination by extracellular matrixand growth factor signaling. . J Mol Med . 2003; ;81: : 392– 403 .
    [Google Scholar]
  43. [43]. Combs   MD., and Yutzey   KE. . Heart valve development: regulatory networks in development and disease. . Circ Res . 2009; ;105: : 408.
    [Google Scholar]
  44. [44]. Gross   L., and Kugel   MA. . Topographic Anatomy and Histology of the valves in the human heart. . Am JPathol . 1931; ;7: : 445– 474.7 .
    [Google Scholar]
  45. [45]. Hinton   RB   Jr   et al. Extracellular matrix remodeling and organization in developing and diseased aorticvalves. . Circ Res . 2006; ;98: : 1431– 1438 .
    [Google Scholar]
  46. [46]. Lamers   WH., , Virágh   S., , Wessels   A., , Moorman   AF., and Anderson   RH. . Formation of the tricuspid valve in the human heart. . Circulation . 1995; ;91: : 111– 121 .
    [Google Scholar]
  47. [47]. Gittenberger-de Groot   AC., , Vrancken Peeters   MP., , Mentink   MM., , Gourdie   RG., and Poelmann   RE. . Epicardium-derived cells contribute a novel population to the myocardial wall andthe atrioventricular cushions. . Circ Res . 1998; ;82: : 1043– 1052 .
    [Google Scholar]
  48. [48]. Chin   C., , Gandour-Edwards   R., , Oltjen   S., and Choy   M. . Fate of the atrioventricular endocardial cushions in the developing chick heart. . Pediatr Res . 1992; ;32: : 390– 393 .
    [Google Scholar]
  49. [49]. Wessels   A   et al. The development of the atrioventricular junction in the human heart. . Circ Res . 1996; ;78: : 110– 117 .
    [Google Scholar]
  50. [50]. Oosthoek   PW   et al. Development of the atrioventricular valve tension apparatus in the human heart. . Anat Embryol . 1998; ;198: : 317– 329 .
    [Google Scholar]
  51. [51]. Verzi   MP., , McCulley   DJ., , De   VS., , Dodou   E., and Black   BL. . The right ventricle, outflow tract, and ventricular septum comprise a restrictedexpression domain within the secondary/anterior heart field. . Dev Biol . 2005; ;287: : 134– 145 .
    [Google Scholar]
  52. [52]. de Lange   FJ   et al. Lineage and morphogenetic analysis of the cardiac valves. . Circ Res . 2004; ;95: : 645– 654 .
    [Google Scholar]
  53. [53]. Lincoln   J., , Alfieri   CM., and Yutzey   KE. . Development of heart valve leaflets and supporting apparatus in chicken and mouseembryos. . Dev Dyn . 2004; ;230: : 239– 250 .
    [Google Scholar]
  54. [54]. Snarr   BS., , Kern   CB., and Wessels   A. . Origin and fate of cardiac mesenchyme. . Dev Dyn . 2008; ;237: : 2804– 2819 .
    [Google Scholar]
  55. [55]. Nakamura   T., , Colbert   MC., and Robbins   J. . Neural crest cells retain multipotential characteristics in the developingvalves and label the cardiac conduction system. . Circ Res . 2006; ;98: : 1547.
    [Google Scholar]
  56. [56]. Zhou   B., , von Gise   A., , Ma   Q., , Hu   YW., and Pu   WT. . Genetic fate mapping demonstrates contribution of epicardium-derived cells tothe annulus fibrosis of the mammalian heart. . Dev Biol . 2010; ;338: : 251– 261 .
    [Google Scholar]
  57. [57]. Hinton   RB., and Yutzey   KE. . Heart valve structure and function in development and disease. . Annu Rev Physiol . 2010; [CrossRef] .
    https://doi.org/10.1146/annurev-physiol-012110-142145 [Google Scholar]
  58. [58]. Brade   T., , Männer   J., and Kühl   M. . The role of Wnt signalling in cardiac development and tissue remodelling in themature heart. . Cardiovasc Res . 2006; ;72: : 198– 209 .
    [Google Scholar]
  59. [59]. Jiao   K   et al. Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodelingduring in vivo cardiac development. . Development . 2006; ;133: : 4585– 4593 .
    [Google Scholar]
  60. [60]. Armstrong   EJ., and Bischoff   J. . Heart valve development: endothelial cell signaling and differentiation. . Circ Res . 2004; ;95: : 459– 470 .
    [Google Scholar]
  61. [61]. Desgrosellier   JS., , Mundell   NA., , McDonnell   MA., , Moses   HL., and Barnett   JV. . Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymaltransformation during cardiac valve formation. . Dev Biol . 2005; ;280: : 201– 210 .
    [Google Scholar]
  62. [62]. Tavares   ALP., , Mercado-Pimentel   ME., , Runyan   RB., and Kitten   GT. . TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymaltransition in the embryonic chick heart. . Dev Dyn . 2006; ;235: : 1589– 1598 .
    [Google Scholar]
  63. [63]. Ma   L., , Lu   MF., , Schwartz   RJ., and Martin   JF. . Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition andmyocardial patterning. . Development . 2005; ;132: : 5601.
    [Google Scholar]
  64. [64]. van Wijk   B., , Moorman   AFM., and van den Hoff   MJB. . Role of bone morphogenetic proteins in cardiac differentiation. . Cardiovasc Res . 2007; ;74: : 244– 255 .
    [Google Scholar]
  65. [65]. Romano   LA., and Runyan   RB. . Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. . Dev Biol . 2000; ;223: : 91– 102 .
    [Google Scholar]
  66. [66]. Romano   LA., and Runyan   RB. . Slug is a mediator of epithelial-mesenchymal cell transformation in the developingchicken heart. . Dev Biol . 1999; ;212: : 243– 254 .
    [Google Scholar]
  67. [67]. Galvin   KM   et al. A role for smad6 in development and homeostasis of the cardiovascular system. . NatGenet . 2000; ;24: : 171– 174 .
    [Google Scholar]
  68. [68]. McCulley   DJ., , Kang   J-O., , Martin   JF., and Black   BL. . BMP4 is required in the anterior heart field and its derivatives for endocardialcushion remodeling, outflow tract septation, and semilunar valve development. . DevDyn . 2008; ;237: : 3200– 3209 .
    [Google Scholar]
  69. [69]. Gitler   AD., , Lu   MM., , Jiang   YQ., , Epstein   JA., and Gruber   PJ. . Molecular markers of cardiac endocardial cushion development. . Dev Dyn . 2003; ;228: : 643– 650 .
    [Google Scholar]
  70. [70]. Liebner   S   et al. Beta-catenin is required for endothelial-mesenchymal transformation during heartcushion development in the mouse. . J Cell Biol . 2004; ;166: : 359– 367 .
    [Google Scholar]
  71. [71]. Hurlstone   AFL   et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. . Nature . 2003; ;425: : 633– 637 .
    [Google Scholar]
  72. [72]. Timmerman   LA   et al. Notch promotes epithelial-mesenchymal transition during cardiac development andoncogenic transformation. . Genes Dev . 2004; ;18: : 99– 115 .
    [Google Scholar]
  73. [73]. Rutenberg   JB   et al. Developmental patterning of the cardiac atrioventricular canal by Notchand Hairy-related transcription factors. . Development . 2006; ;133: : 4381– 4390 .
    [Google Scholar]
  74. [74]. Kokubo   H., , Tomita-Miyagawa   S., , Hamada   Y., and Saga   Y. . Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developingheart through the repression of Tbx2. . Development . 2007; ;134: : 747– 755 .
    [Google Scholar]
  75. [75]. MacGrogan   D., , Luna-Zurita   L., and de la Pompa   JL. . Notch signaling in cardiac valve development and disease. . Birth Defects Res. Part AClin Mol Teratol . 2011; ;91: : 449– 459 .
    [Google Scholar]
  76. [76]. Luna-Zurita   L   et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-drivencell invasiveness regulates murine cardiac valve formation. . J Clin Invest . 2010; ;120: : 3493– 3507 .
    [Google Scholar]
  77. [77]. Watanabe   Y   et al. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heartmorphogenesis in mouse. . Development . 2006; ;133: : 1625– 1634 .
    [Google Scholar]
  78. [78]. Rusanescu   G., , Weissleder   R., and Aikawa   E. . Notch signaling in cardiovascular disease and calcification. . Curr Cardiol Rev . 2008; ;4: : 148– 156 .
    [Google Scholar]
  79. [79]. Fu   Y   et al. RUNX3 maintains the mesenchymal phenotype after termination of the Notchsignal. . J Biol Chem . 2011; ;286: : 11803– 11813 .
    [Google Scholar]
  80. [80]. de la Pompa   JL   et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves andseptum. . Nature . 1998; ;392: : 182– 186 .
    [Google Scholar]
  81. [81]. Ranger   AM   et al. The transcription factor NF-ATc is essential for cardiac valve formation. . Nature . 1998; ;392: : 186– 190 .
    [Google Scholar]
  82. [82]. Lange   AW., and Yutzey   KE. . NFATc1 expression in the developing heart valves is responsive to the RANKLpathway and is required for endocardial expression of cathepsin K. . Dev Biol . 2006; ;292: : 407– 417 .
    [Google Scholar]
  83. [83]. Combs   MD., and Yutzey   KE. . VEGF and RANKL regulation of NFATc1 in heart valve development. . Circ Res . 2009; ;105: : 565– 574 .
    [Google Scholar]
  84. [84]. Dor   Y   et al. A novel role for VEGF in endocardial cushion formation and its potentialcontribution to congenital heart defects. . Development . 2001; ;128: : 1531– 1538 .
    [Google Scholar]
  85. [85]. Krenz   M   et al. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. . Proc Natl Acad Sci USA . 2008; ;105: : 18930– 18935 .
    [Google Scholar]
  86. [86]. Fragale   A., , Tartaglia   M., , Wu   J., and Gelb   BD. . Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependentprolonged GAB1 binding and sustained ERK2/MAPK1 activation. . Hum Mutat . 2004; ;23: : 267– 277 .
    [Google Scholar]
  87. [87]. Araki   T   et al. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium toenhance endocardial-mesenchymal transformation. . Proc Natl Acad Sci USA . 2009; ;106: : 4736– 4741 .
    [Google Scholar]
  88. [88]. Meyer   D., and Birchmeier   C. . Multiple essential functions of neuregulin in development. . Nature . 1995; ;378: : 386– 390 .
    [Google Scholar]
  89. [89]. Sibilia   M   et al. Mice humanised for the EGF receptor display hypomorphic phenotypes in skin, boneand heart. . Development . 2003; ;130: : 4515– 4525 .
    [Google Scholar]
  90. [90]. Jackson   LF   et al. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrantBMP signaling. . EMBO J . 2003; ;22: : 2704– 2716 .
    [Google Scholar]
  91. [91]. Chen   B   et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. . NatGenet . 2000; ;24: : 296– 299 .
    [Google Scholar]
  92. [92]. Chan   R., , Hardy   WR., , Laing   MA., , Hardy   SE., and Muller   WJ. . The catalytic activity of the ErbB-2 receptor tyrosine kinase is essential forembryonic development. . Mol Cell Biol . 2002; ;22: : 1073– 1078 .
    [Google Scholar]
  93. [93]. Sanchez-Soria   P., and Camenisch   TD. . ErbB signaling in cardiac development and disease. . Semin Cell Dev Biol . 2010; ;21: : 929– 935 .
    [Google Scholar]
  94. [94]. Zhou   H-M   et al. Essential role for ADAM19 in cardiovascular morphogenesis. . Mol Cell Biol . 2004; ;24: : 96– 104 .
    [Google Scholar]
  95. [95]. Horiuchi   K., , Zhou   H-ming., , Kelly   K., , Manova   K., and Blobel   CP. . Evaluation of the contributions of ADAMs 9,12,15,17, and19 to heart development and ectodomain shedding of neuregulins h1 and h2. . DevBiol . 2005; ;283: : 459– 471 .
    [Google Scholar]
  96. [96]. Scherz   PJ., , Huisken   J., , Sahai-Hernandez   P., and Stainier   DYR. . High-speed imaging of developing heart valves reveals interplay of morphogenesisand function. . Development . 2008; ;135: : 1179– 1187 .
    [Google Scholar]
  97. [97]. Hove   JR   et al. Intracardiac fluid forces are an essential epigenetic factor for embryoniccardiogenesis. . Nature . 2003; ;421: : 172– 177 .
    [Google Scholar]
  98. [98]. Yashiro   K., , Shiratori   H., and Hamada   H. . Haemodynamics determined by a genetic programme govern asymmetricdevelopment of the aortic arch. . Nature . 2007; ;450: : 285– 288 .
    [Google Scholar]
  99. [99]. Vermot   J   et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in thedeveloping heart. . PLoS Biol . 2009; ;7: : e1000246.
    [Google Scholar]
  100. [100]. Markwald   RR., , Norris   RA., , Moreno-Rodriguez   R., and Levine   RA. . Developmental basis of adult cardiovascular diseases: valvular heart diseases. . Ann NY Acad Sci . 2010; ;1188: : 177– 183 .
    [Google Scholar]
  101. [101]. Wirrig   EE., and Yutzey   KE. . Transcriptional regulation of heart valve development and disease. . CardiovascPathol . 2011; ;20: : 162– 167 .
    [Google Scholar]
  102. [102]. Cripe   L., , Andelfinger   G., , Martin   LJ., , Shooner   K., and Benson   DW. . Bicuspid aortic valve is heritable. . J Am Coll Cardiol . 2004; ;44: : 138– 143 .
    [Google Scholar]
  103. [103]. Hinton   RB   et al. Hypoplastic left heart syndrome is heritable. . J Am Coll Cardiol . 2007; ;50: : 1590– 1595 .
    [Google Scholar]
  104. [104]. McBride   KL   et al. Inheritance analysis of congenital left ventricular outflow tract obstructionmalformations: segregation, multiplex relative risk, and heritability. . Am J Med GenetA . 2005; ;134: : 180– 186 .
    [Google Scholar]
  105. [105]. Freed   LA   et al. A locus for autosomal dominant mitral valve prolapse on chromosome 11p15.4. . Am JHum Genet . 2003; ;72: : 1551– 1559 .
    [Google Scholar]
  106. [106]. Disse   S   et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valveprolapse to chromosome 16p11.2-p12.1. . Am J Hum Genet . 1999; ;65: : 1242– 1251 .
    [Google Scholar]
  107. [107]. Nesta   F   et al. New locus for autosomal dominant mitral valve prolapse on chromosome13: clinical insights from genetic studies. . Circulation . 2005; ;112: : 2022– 2030 .
    [Google Scholar]
  108. [108]. Grau   JB., , Pirelli   L., , Yu   P-J., , Galloway   AC., and Ostrer   H. . The genetics of mitral valve prolapse. . Clin Genet . 2007; ;72: : 288– 295 .
    [Google Scholar]
  109. [109]. Kyndt   F   et al. Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. . Am JHum Genet . 1998; ;62: : 627– 632 .
    [Google Scholar]
  110. [110]. Klaus   A., , Saga   Y., , Taketo   MM., , Tzahor   E., and Birchmeier   W. . Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. . Proc Natl Acad Sci USA . 2007; ;104: : 18531– 18536 .
    [Google Scholar]
  111. [111]. Wang   J., , Greene   SB., and Martin   JF. . BMP signaling in congenital heart disease: New developments and future directions. . Birth Defects Res Part A Clin Mol Teratol . 2011; ;91: : 441– 448 .
    [Google Scholar]
  112. [112]. Smith   KA   et al. Dominant-negative ALK2 allele associates with congenital heart defects. . Circulation . 2009; ;119: : 3062– 3069 .
    [Google Scholar]
  113. [113]. Joziasse   IC   et al. ALK2 mutation in a patient with Down’s syndrome and a congenital heart defect. . Eur J Hum Genet . 2011; ;19: : 389– 393 .
    [Google Scholar]
  114. [114]. Wang   J   et al. Atrioventricular cushion transformation is mediated by ALK2 in the developingmouse heart. . Dev Biol . 2005; ;286: : 299– 310 .
    [Google Scholar]
  115. [115]. Song   L., , Fässler   R., , Mishina   Y., , Jiao   K., and Baldwin   HS. . Essential functions of Alk3 during AV cushion morphogenesis in mouse embryonichearts. . Dev Biol . 2007; ;301: : 276– 286 .
    [Google Scholar]
  116. [116]. Andrabi   S   et al. SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, andmitral valve dysfunction. . Am J Med Genet A . 2011; ;155: : 1165– 1169 .
    [Google Scholar]
  117. [117]. Howe   JR   et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. . Science . 1998; ;280: : 1086– 1088 .
    [Google Scholar]
  118. [118]. Gallione   C   et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP–HHTsyndrome. . Am J Med Genet A . 2010; ;152A: : 333– 339 .
    [Google Scholar]
  119. [119]. Iyer   NK., , Burke   CA., , Leach   BH., and Parambil   JG. . SMAD4 mutation and the combined syndrome of juvenile polyposis syndrome andhereditary haemorrhagic telangiectasia. . Thorax . 2010; ;65: : 745– 746 .
    [Google Scholar]
  120. [120]. Moskowitz   IP   et al. Cardiac-specific transcription factor genes Smad4 and Gata4 cooperatively regulatecardiac valve development. . Proc Natl Acad Sci USA . 2011; ;108: : 4006– 4011 .
    [Google Scholar]
  121. [121]. van de Laar   IMBH   et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissectionswith early-onset osteoarthritis. . Nat Genet . 2011; ;43: : 121– 126 .
    [Google Scholar]
  122. [122]. Garg   V   et al. Mutations in NOTCH1 cause aortic valve disease. . Nature . 2005; ;437: : 270– 274 .
    [Google Scholar]
  123. [123]. McBride   KL   et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformationsreduce ligand-induced signaling. . Hum Mol Genet . 2008; ;17: : 2886– 2893 .
    [Google Scholar]
  124. [124]. Mohamed   SA   et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients withbicuspid aortic valve. . Biochem Biophys Res Commun . 2006; ;345: : 1460– 1465 .
    [Google Scholar]
  125. [125]. McKellar   SH   et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve diseaseand thoracic aortic aneurysms. . J Thorac Cardiovasc Surg . 2007; ;134: : 290– 296 .
    [Google Scholar]
  126. [126]. Alagille   D   et al. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepaticdysplasia): review of 80 cases. . J Pediatr . 1987; ;110: : 195– 200 .
    [Google Scholar]
  127. [127]. Krantz   ID   et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. . AmJ Med Genet . 1999; ;84: : 56– 60 .
    [Google Scholar]
  128. [128]. Benson   DW   et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiacdevelopmental pathways. . J Clin Invest . 1999; ;104: : 1567– 1573 .
    [Google Scholar]
  129. [129]. Goldmuntz   E., , Geiger   E., and Benson   DW. . NKX2.5 mutations in patients with tetralogy of fallot. . Circulation . 2001; ;104: : 2565– 2568 .
    [Google Scholar]
  130. [130]. McElhinney   DB., , Geiger   E., , Blinder   J., , Benson   DW., and Goldmuntz   E. . NKX2.5 mutations in patients with congenital heart disease. . J Am Coll Cardiol . 2003; ;42: : 1650– 1655 .
    [Google Scholar]
  131. [131]. Schott   JJ   et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. . Science . 1998; ;281: : 108– 111 .
    [Google Scholar]
  132. [132]. König   K., , Will   JC., , Berger   F., , Müller   D., and Benson   DW. . Familial congenital heart disease, progressive atrioventricular block and the cardiachomeobox transcription factor gene NKX2.5: identification of a novel mutation. . ClinRes Cardiol . 2006; ;95: : 499– 503 .
    [Google Scholar]
  133. [133]. Garg   V   et al. GATA4 mutations cause human congenital heart defects and reveal an interactionwith TBX5. . Nature . 2003; ;424: : 443– 447 .
    [Google Scholar]
  134. [134]. Reamon-Buettner   SM., and Borlak   J. . TBX5 mutations in non-Holt–Oram syndrome (HOS) malformed hearts. . HumMutat . 2004; ;24: : 104.
    [Google Scholar]
  135. [135]. Sperling   S   et al. Identification and functional analysis of CITED2 mutations in patients withcongenital heart defects. . Hum Mutat . 2005; ;26: : 575– 582 .
    [Google Scholar]
  136. [136]. Reamon-Buettner   SM., and Borlak   J. . HEY2 mutations in malformed hearts. . Hum Mutat . 2006; ;27: : 118.
    [Google Scholar]
  137. [137]. Guo   DC   et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysmsand dissections. . Nat Genet . 2007; ;39: : 1488– 1493 .
    [Google Scholar]
  138. [138]. Zhu   L   et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aorticaneurysm/aortic dissection and patent ductus arteriosus. . Nat Genet . 2006; ;38: : 343– 349 .
    [Google Scholar]
  139. [139]. Winston   JB   et al. Heterogeneity of genetic modifiers ensures normal cardiac development. . Circulation . 2010; ;121: : 1313– 1321 .
    [Google Scholar]
  140. [140]. Laforest   B., , Andelfinger   G., and Nemer   M. . Loss of Gata5 in mice leads to bicuspid aortic valve. . J Clin Invest . 2011; [CrossRef] .
    https://doi.org/10.1172/JCI44555 [Google Scholar]
  141. [141]. Ewart   AK   et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. . Nat Genet . 1993; ;5: : 11– 16 .
    [Google Scholar]
  142. [142]. Li   DY   et al. Elastin is an essential determinant of arterial morphogenesis. . Nature . 1998; ;393: : 276– 280 .
    [Google Scholar]
  143. [143]. Li   DY   et al. Novel arterial pathology in mice and humans hemizygous for elastin. . J Clin Invest . 1998; ;102: : 1783– 1787 .
    [Google Scholar]
  144. [144]. Hinton   RB   et al. Elastin haploinsufficiency results in progressive aortic valve malformation and latentvalve disease in a mouse model. . Circ Res . 2010; ;107: : 549– 557 .
    [Google Scholar]
  145. [145]. Sage   H., and Gray   WR. . Studies on the evolution of elastin–I. phylogenetic distribution. . Comp BiochemPhysiol B . 1979; ;64: : 313– 327 .
    [Google Scholar]
  146. [146]. Rosenquist   TH., , McCoy   JR., , Waldo   KL., and Kirby   ML. . Origin and propagation of elastogenesis in the developing cardiovascular system. . Anat Rec . 1988; ;221: : 860– 871 .
    [Google Scholar]
  147. [147]. Hinton   RB   et al. Extracellular matrix remodeling and organization in developing and diseased aorticvalves. . Circ Res . 2006; ;98: : 1431– 1438 .
    [Google Scholar]
  148. [148]. Majava   M   et al. A report on 10 new patients with heterozygous mutations in the COL11A1 gene anda review of genotype-phenotype correlations in type XI collagenopathies. . Am J MedGenet A . 2007; ;143: : 258– 264 .
    [Google Scholar]
  149. [149]. Van Camp   G   et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in theCOL9A1 gene. . Am J Hum Genet . 2006; ;79: : 449– 457 .
    [Google Scholar]
  150. [150]. Ahmad   N   et al. Prevalence of mitral valve prolapse in Stickler syndrome. . Am J Med Genet A . 2003; ;116A: : 234– 237 .
    [Google Scholar]
  151. [151]. Byers   PH., , Tsipouras   P., , Bonadio   JF., , Starman   BJ., and Schwartz   RC. . Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneousdisorder usually due to new mutations in the genes for type I collagen. . Am J HumGenet . 1988; ;42: : 237– 248 .
    [Google Scholar]
  152. [152]. Superti-Furga   A., , Gugler   E., , Gitzelmann   R., and Steinmann   B. . Ehlers–Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1alleles affecting structure, stability, and processing of type III procollagen. . J BiolChem . 1988; ;263: : 6226– 6232 .
    [Google Scholar]
  153. [153]. Lincoln   J., , Florer   JB., , Deutsch   GH., , Wenstrup   RJ., and Yutzey   KE. . ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valvedevelopment. . Dev Dyn . 2006; ;235: : 3295– 3305 .
    [Google Scholar]
  154. [154]. Liu   X., , Wu   H., , Byrne   M., , Krane   S., and Jaenisch   R. . Type III collagen is crucial for collagen I fibrillogenesis and for normalcardiovascular development. . Proc Natl Acad Sci USA . 1997; ;94: : 1852– 1856 .
    [Google Scholar]
  155. [155]. Lucero   HA., and Kagan   HM. . Lysyl oxidase: an oxidative enzyme and effector of cell function. . Cell Mol Life Sci . 2006; ;63: : 2304– 2316 .
    [Google Scholar]
  156. [156]. Hornstra   IK   et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. . J BiolChem . 2003; ;278: : 14387– 14393 .
    [Google Scholar]
  157. [157]. Mäki   JM   et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovasculardysfunction, and perinatal death in mice. . Circulation . 2002; ;106: : 2503– 2509 .
    [Google Scholar]
  158. [158]. Hurtado   PA   et al. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation. . Biochem Biophys Res Commun . 2008; ;366: : 156– 161 .
    [Google Scholar]
  159. [159]. Atsawasuwan   P   et al. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling viaamine oxidase activity. . J Biol Chem . 2008; ;283: : 34229– 34240 .
    [Google Scholar]
  160. [160]. Oleggini   R., , Gastaldo   N., and Di Donato   A. . Regulation of elastin promoter by lysyl oxidase and growth factors: crosscontrol of lysyl oxidase on TGF-beta1 effects. . Matrix Biol . 2007; ;26: : 494– 505 .
    [Google Scholar]
  161. [161]. Giampuzzi   M   et al. Lysyl oxidase activates the transcription activity of human collagene IIIpromoter. possible involvement of Ku antigen. . J Biol Chem . 2000; ;275: : 36341– 36349 .
    [Google Scholar]
  162. [162]. Liu   X   et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. . Nat Genet . 2004; ;36: : 178– 182 .
    [Google Scholar]
  163. [163]. McLaughlin   PJ   et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethalityin mice. . Mol Cell Biol . 2006; ;26: : 1700– 1709 .
    [Google Scholar]
  164. [164]. Hirai   M   et al. Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated byproteolytic cleavage in vivo. . J Cell Biol . 2007; ;176: : 1061– 1071 .
    [Google Scholar]
  165. [165]. Hanada   K   et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4deficient mice. . Circulation research . 2007; ;01: :
    [Google Scholar]
  166. [166]. Hucthagowder   V   et al. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. . Am J HumGenet . 2006; ;78: : 1075– 1080 .
    [Google Scholar]
  167. [167]. Loeys   B   et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe formof cutis laxa. . Hum Mol Genet . 2002; ;11: : 2113– 2118 .
    [Google Scholar]
  168. [168]. Pyeritz   RE., and McKusick   VA. . The Marfan syndrome: diagnosis and management. . N Engl J Med . 1979; ;300: : 772– 777 .
    [Google Scholar]
  169. [169]. Dietz   HC   et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillingene. . Nature . 1991; ;352: : 337– 339 .
    [Google Scholar]
  170. [170]. Dietz   HC., , Loeys   B., , Carta   L., and Ramirez   F. . Recent progress towards a molecular understanding of Marfan syndrome. . AmericanJournal of Medical Genetics Part C: Seminars in Medical Genetics . 2005; ;139: : 4– 9 .
    [Google Scholar]
  171. [171]. Ng   CM   et al. TGF-β-dependentpathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. . J ClinInvest . 2004; ;114: : 1586– 1592 .
    [Google Scholar]
  172. [172]. Gupta   PA   et al. Ten novel FBN2 mutations in congenital contracturalarachnodactyly: delineation of the molecular pathogenesis and clinical phenotype. . Hum Mutat . 2002; ;19: : 39– 48 .
    [Google Scholar]
  173. [173]. Putnam   EA., , Zhang   H., , Ramirez   F., and Milewicz   DM. . Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenitalcontractural arachnodactyly. . Nat Genet . 1995; ;11: : 456– 458 .
    [Google Scholar]
  174. [174]. Chaudhry   SS   et al. Mutation of the gene encoding fibrillin-2 results in syndactyly in mice. . Hum MolGenet . 2001; ;10: : 835– 843 .
    [Google Scholar]
  175. [175]. Gansner   JM., , Madsen   EC., , Mecham   RP., and Gitlin   JD. . Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. . DevDyn . 2008; ;237: : 2844– 2861 .
    [Google Scholar]
  176. [176]. Loeys   BL   et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. . N Engl J Med . 2006; ;355: : 788– 798 .
    [Google Scholar]
  177. [177]. Attias   D   et al. Comparison of clinical presentations and outcomes between patients with TGFBR2and FBN1 mutations in Marfan syndrome and related disorders. . Circulation . 2009; ;120: : 2541– 2549 .
    [Google Scholar]
  178. [178]. Stheneur   C   et al. Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotypeinvestigations in 457 patients with Marfan syndrome type I and II, Loeys–Dietzsyndrome and related disorders. . Hum Mutat . 2008; ;29: : E284– 295 .
    [Google Scholar]
  179. [179]. Kosaki   K   et al. Molecular pathology of Shprintzen–Goldberg syndrome. . Am J Med Genet A . 2006; ;140: : 104– 108 . author reply 109–110 .
    [Google Scholar]
  180. [180]. Morales   J   et al. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia,ectopia lentis, glaucoma, spherophakia, and short stature. . Am J Hum Genet . 2009; ;85: : 558– 568 .
    [Google Scholar]
  181. [181]. Dagoneau   N   et al. ADAMTS10 mutations in autosomal recessive Weill–Marchesani syndrome. . Am JHum Genet . 2004; ;75: : 801– 806 .
    [Google Scholar]
  182. [182]. Kern   CB   et al. Reduced versican cleavage due to Adamts9 haploinsufficiency is associated withcardiac and aortic anomalies. . Matrix Biol . 2010; ;29: : 304– 316 .
    [Google Scholar]
  183. [183]. Jungers   KA., , Le Goff   C., , Somerville   RPT., and Apte   SS. . Adamts9 is widely expressed during mouse embryo development. . Gene ExpressionPatterns . 2005; ;5: : 609– 617 .
    [Google Scholar]
  184. [184]. Carta   L   et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. . J Biol Chem . 2006; ;281: : 8016– 8023 .
    [Google Scholar]
  185. [185]. Ohno-Jinno   A   et al. Versican and fibrillin-1 form a major hyaluronan-binding complex in the ciliarybody. . Invest Ophthalmol Vis Sci . 2008; ;49: : 2870– 2877 .
    [Google Scholar]
  186. [186]. Camenisch   TD., , Biesterfeldt   J., , Brehm-Gibson   T., , Bradley   J., and McDonald   JA. . Regulation of cardiac cushion development by hyaluronan. . Exp Clin Cardiol . 2001; ;6: : 4– 10 .
    [Google Scholar]
  187. [187]. Camenisch   TD., , Schroeder   JA., , Bradley   J., , Klewer   SE., and McDonald   JA. . Heart-valve mesenchyme formation is dependent on hyaluronan-augmentedactivation of ErbB2–ErbB3 receptors. . Nat Med . 2002; ;8: : 850– 855 .
    [Google Scholar]
  188. [188]. Kern   CB   et al. Proteolytic cleavage of versican during cardiac cushion morphogenesis. . Dev Dyn . 2006; ;235: : 2238– 2247 .
    [Google Scholar]
  189. [189]. Kern   CB   et al. Versican proteolysis mediates myocardial regression during outflow tractdevelopment. . Dev Dyn . 2007; ;236: : 671– 683 .
    [Google Scholar]
  190. [190]. Azeloglu   EU., , Albro   MB., , Thimmappa   VA., , Ateshian   GA., and Costa   KD. . Heterogeneous transmural proteoglycan distribution provides a mechanism forregulating residual stresses in the aorta. . Am J Physiol Heart Circ Physiol . 2008; ;294: : H1197– 1205 .
    [Google Scholar]
  191. [191]. Ramirez   F., , Sakai   LY., , Rifkin   DB., and Dietz   HC. . Extracellular microfibrils in development and disease. . Cell Mol Life Sci . 2007; ;64: : 2437– 2446 .
    [Google Scholar]
  192. [192]. Kenagy   RD   et al. Accumulation and loss of extracellular matrix during shear stress-mediated intimalgrowth and regression in baboon vascular grafts. . J Histochem Cytochem . 2005; ;53: : 131– 140 .
    [Google Scholar]
  193. [193]. Le Goff   C   et al. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role forADAMTS-like proteins in TGF-beta bioavailability regulation. . Nat Genet . 2008; ;40: : 1119– 1123 .
    [Google Scholar]
  194. [194]. Le Goff   C., and Cormier-Daire   V. . Genetic and molecular aspects of acromelic dysplasia. . Pediatr Endocrinol Rev . 2009; ;6: : 418– 423 .
    [Google Scholar]
  195. [195]. Allali   S   et al. Molecular screening of ADAMTSL2 gene in 33 patients reveals the geneticheterogeneity of geleophysic dysplasia. . J Med Genet . 2011; ;48: : 417– 421 .
    [Google Scholar]
  196. [196]. Dietz   HC. . New therapeutic approaches to mendelian disorders. . N Engl J Med . 2010; ;363: : 852– 863 .
    [Google Scholar]
  197. [197]. Brooke   BS   et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. . N Engl JMed . 2008; ;358: : 2787– 2795 .
    [Google Scholar]
  198. [198]. Habashi   JP   et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfansyndrome. . Science . 2006; ;312: : 117– 121 .
    [Google Scholar]
  199. [199]. Habashi   JP   et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice throughERK antagonism. . Science . 2011; ;332: : 361– 365 .
    [Google Scholar]
  200. [200]. Holm   TM   et al. Noncanonical TGFβsignaling contributes to aortic aneurysm progression in Marfan syndrome mice. . Science . 2011; ;332: : 358– 361 .
    [Google Scholar]
  201. [201]. Hirayama-Yamada   K   et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. . Am JMed Genet A . 2005; ;135: : 47– 52 .
    [Google Scholar]
  202. [202]. Sarkozy   A   et al. Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4transcription factors. . J Med Genet . 2005; ;42: : e16.
    [Google Scholar]
  203. [203]. Reamon-Buettner   SM., and Borlak   J. . GATA4 zinc finger mutations as a molecular rationale for septation defects of thehuman heart. . J Med Genet . 2005; ;42: : e32.
    [Google Scholar]
  204. [204]. Pehlivan   T   et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosomeregion 8p23.1 and congenital heart disease. . Am J Med Genet . 1999; ;83: : 201– 206 .
    [Google Scholar]
  205. [205]. Kirk   EP   et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiacpathologies, including defects of septation and valvulogenesis and cardiomyopathy. . Am J Hum Genet . 2007; ;81: : 280– 291 .
    [Google Scholar]
  206. [206]. Postma   AV   et al. A gain-of-function TBX5 mutation is associated with atypical Holt–Oramsyndrome and paroxysmal atrial fibrillation. . Circ Res . 2008; ;102: : 1433– 1442 .
    [Google Scholar]
  207. [207]. Hart   AW   et al. Cardiac malformations and midline skeletal defects in mice lacking filamin A. . HumMol Genet . 2006; ;15: : 2457– 2467 .
    [Google Scholar]
  208. [208]. Kyndt   F   et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvulardystrophy. . Circulation . 2007; ;115: : 40.
    [Google Scholar]
  209. [209]. Dietz   HC   et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-likedomain calcium binding in the pathogenesis of Marfan syndrome. . Genomics . 1993; ;17: : 468– 475 .
    [Google Scholar]
  210. [210]. Kojuri   J., , Razeghinejad   MR., and Aslani   A. . Cardiac findings in Weill–Marchesani syndrome. . Am J Med Genet A . 2007; ;143A: : 2062– 2064 .
    [Google Scholar]
  211. [211]. Gould   DB   et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. . Science . 2005; ;308: : 1167– 1171 .
    [Google Scholar]
  212. [212]. Richards   AJ   et al. Variation in the vitreous phenotype of Stickler syndrome can be caused by differentamino acid substitutions in the X position of the type II collagen Gly-X-Y triplehelix. . Am J Hum Genet . 2000; ;67: : 1083– 1094 .
    [Google Scholar]
  213. [213]. Richardson   L   et al. EMAGE mouse embryo spatial gene expression database: 2010 update. . NucleicAcids Res . 2010; ;38: : D703– 709 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.9
Loading
/content/journals/10.5339/ahcsps.2011.9
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error