1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  • EISSN:

Abstract

Abstract

Cardiac malformations, most commonly valve defects, are some of the predominant causes of cardiovascular morbidity and mortality worldwide. Up to a third of all patients with complex congenital heart defects and numerous syndromic conditions, as well as a significant amount of the general population, exhibit valve defects. These observations have not only major implications in infancy; they also have a major impact on the adult population and the growing number of adults with congenital malformations. Over recent years, a large number of Mendelian inheritance patterns and syndromic causes have been identified, shedding light on the importance of genes encoding components of the extracelluar matrix in valve disease. Nevertheless, we still know little about the genetic origin of sporadic and more complex family traits. It is unclear to what extent genetic variations play a role in disease pathogenesis and influences phenotypes rooted in early development. Such knowledge would be greatly beneficial for counseling and treatment of patients. Therefore, this review summarizes the findings in human non-syndromic and syndromic valve disease with a special focus on extracellular matrix proteins, and discusses them in the context of vertebrate valve development.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.9
2011-12-29
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.9.html?itemId=/content/journals/10.5339/ahcsps.2011.9&mimeType=html&fmt=ahah

References

  1. Hoffman  JI, Kaplan  S and Liberthson  RR. Prevalence of congenital heart disease. Am Heart J. 2004; 147::425439.
    [Google Scholar]
  2. Hoffman  JI and Kaplan  S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002; 39::18901900.
    [Google Scholar]
  3. Loffredo  CA. Epidemiology of cardiovascular malformations: prevalence and risk factors. Am J Med Genet. 2000; 97::319325.
    [Google Scholar]
  4. Loffredo  CA   et al. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet. 2004; 124A::225230.
    [Google Scholar]
  5. Hinton  RB   et al. Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol. 2009; 53::10651071.
    [Google Scholar]
  6. Basso  C   et al. An echocardiographic survey of primary school children for bicuspid aortic valve. Am J Cardiol. 2004; 93::661663.
    [Google Scholar]
  7. Nistri  S, Basso  C, Marzari  C, Mormino  P and Thiene  G. Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. Am J Cardiol. 2005; 96::718721.
    [Google Scholar]
  8. Freed  LA   et al. Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham heart study. J Am Coll Cardiol. 2002; 40::12981304.
    [Google Scholar]
  9. Roberts  WC and Ko  JM. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation. 2005; 111::920.
    [Google Scholar]
  10. Billett  J, Cowie  MR, Gatzoulis  MA, Vonder Muhll  IF and Majeed  A. Comorbidity, healthcare utilisation and process of care measures in patients with congenital heart disease in the UK: cross-sectional, population-based study with case-control analysis. Heart. 2008; 94::11941199.
    [Google Scholar]
  11. Billett  J, Majeed  A, Gatzoulis  M and Cowie  M. Trends in hospital admissions, in-hospital case fatality and population mortality from congenital heart disease in England, 1994 to 2004. Heart. 2008; 94::342348.
    [Google Scholar]
  12. Pillutla  P, Shetty  KD and Foster  E. Mortality associated with adult congenital heart disease: trends in the US population from 1979 to 2005. Am Heart J. 2009; 158::874879.
    [Google Scholar]
  13. Aristotle Historia Animalium. Book VI 3 translated by Beck 1970, (384AD).
  14. Masic  I. On occasion of 800th anniversary of birth of Ibn al-Nafis–discoverer of cardiac and pulmonary circulation. Med Arh. 2010; 64::309313.
    [Google Scholar]
  15. Clayton M andMuseum of Fine Arts, Houston; Windsor Castle. Leonardo da Vinci: the anatomy of man: drawings from the collection of Her Majesty Queen Elizabeth II. (Museum of Fine Arts; Little Brown and Co.: Houston; Boston, 1992).
  16. Tam  PP, Parameswaran  M, Kinder  SJ and Weinberger  RP. The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development. 1997; 124::16311642.
    [Google Scholar]
  17. Garcia-Martinez  V and Schoenwolf  GC. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol. 1993; 159::706719.
    [Google Scholar]
  18. Saga  Y   et al. MesP1: a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation. Development. 1996; 122::27692778.
    [Google Scholar]
  19. Saga  Y, Kitajima  S and Miyagawa-Tomita  S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10::345352.
    [Google Scholar]
  20. Saga  Y   et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999; 126::34373447.
    [Google Scholar]
  21. Bondue  A   et al. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 2008; 3::6984.
    [Google Scholar]
  22. Schoenebeck  JJ, Keegan  BR and Yelon  D. Vessel and blood specification override cardiac potential in anterior mesoderm. Dev Cell. 2007; 13::254267.
    [Google Scholar]
  23. Prall  OWJ   et al. An Nkx2-5/Bmp2/Smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell. 2007; 128::947959.
    [Google Scholar]
  24. Christoffels  VM   et al. Chamber formation and morphogenesis in the developing mammalian heart. Dev Biol. 2000; 223::266278.
    [Google Scholar]
  25. Brand  T. Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol. 2003; 258::119.
    [Google Scholar]
  26. Davis  CL. The cardiac jelly of the chick embryo. Anat Rec. 1924; 27::201202.
    [Google Scholar]
  27. Männer  J, Wessel  A and Yelbuz  TM. How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn. 2010; 239::10351046.
    [Google Scholar]
  28. Lee  JS   et al. Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell. 2006; 11::845857.
    [Google Scholar]
  29. Greulich  F, Rudat  C and Kispert  A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 2011 [CrossRef].
    https://doi.org/10.1093/cvr/cvr112 [Google Scholar]
  30. Kelly  RG, Brown  NA and Buckingham  ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell. 2001; 1::435440.
    [Google Scholar]
  31. Torlopp  A, Schlueter  J and Brand  T. Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev Dyn. 2010; 239::23932403.
    [Google Scholar]
  32. Cai  CL   et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5::877889.
    [Google Scholar]
  33. Laugwitz  KL, Moretti  A, Caron  L, Nakano  A and Chien  KR. Islet1 cardiovascular progenitors: a single source for heart lineages? Development. 2008; 135::193205.
    [Google Scholar]
  34. Waldo  K   et al. A novel role for cardiac neural crest in heart development. J Clin Invest. 1999; 103::14991507.
    [Google Scholar]
  35. Jiang  X, Rowitch  DH, Soriano  P, McMahon  AP and Sucov  HM. Fate of the mammalian cardiac neural crest. Development. 2000; 127::16071616.
    [Google Scholar]
  36. Männer  J, Schlueter  J and Brand  T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev Dyn. 2005; 233::14541463.
    [Google Scholar]
  37. Cai  C-L   et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454::104108.
    [Google Scholar]
  38. Zhou  B   et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454::109113.
    [Google Scholar]
  39. Christoffels  VM   et al. Tbx18 and the fate of epicardial progenitors. Nature. 2009; 458::E89. discussion E9–10 .
    [Google Scholar]
  40. Rosenthal  N and Harvey  RP. Heart Development and Regeneration. Academic. Amsterdam; Oxford. 2010.
    [Google Scholar]
  41. Person  AD, Klewer  SE and Runyan  RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005; 243::287335.
    [Google Scholar]
  42. Schroeder  JA, Jackson  LF, Lee  DC and Camenisch  TD. Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med. 2003; 81::392403.
    [Google Scholar]
  43. Combs  MD and Yutzey  KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009; 105::408.
    [Google Scholar]
  44. Gross  L and Kugel  MA. Topographic Anatomy and Histology of the valves in the human heart. Am J Pathol. 1931; 7::445474.7.
    [Google Scholar]
  45. Hinton  RB  Jr   et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006; 98::14311438.
    [Google Scholar]
  46. Lamers  WH, Virágh  S, Wessels  A, Moorman  AF and Anderson  RH. Formation of the tricuspid valve in the human heart. Circulation. 1995; 91::111121.
    [Google Scholar]
  47. Gittenberger-de Groot  AC, Vrancken Peeters  MP, Mentink  MM, Gourdie  RG and Poelmann  RE. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998; 82::10431052.
    [Google Scholar]
  48. Chin  C, Gandour-Edwards  R, Oltjen  S and Choy  M. Fate of the atrioventricular endocardial cushions in the developing chick heart. Pediatr Res. 1992; 32::390393.
    [Google Scholar]
  49. Wessels  A   et al. The development of the atrioventricular junction in the human heart. Circ Res. 1996; 78::110117.
    [Google Scholar]
  50. Oosthoek  PW   et al. Development of the atrioventricular valve tension apparatus in the human heart. Anat Embryol. 1998; 198::317329.
    [Google Scholar]
  51. Verzi  MP, McCulley  DJ, De  VS, Dodou  E and Black  BL. The right ventricle, outflow tract, and ventricular septum comprise a restricted expression domain within the secondary/anterior heart field. Dev Biol. 2005; 287::134145.
    [Google Scholar]
  52. de Lange  FJ   et al. Lineage and morphogenetic analysis of the cardiac valves. Circ Res. 2004; 95::645654.
    [Google Scholar]
  53. Lincoln  J, Alfieri  CM and Yutzey  KE. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos. Dev Dyn. 2004; 230::239250.
    [Google Scholar]
  54. Snarr  BS, Kern  CB and Wessels  A. Origin and fate of cardiac mesenchyme. Dev Dyn. 2008; 237::28042819.
    [Google Scholar]
  55. Nakamura  T, Colbert  MC and Robbins  J. Neural crest cells retain multipotential characteristics in the developing valves and label the cardiac conduction system. Circ Res. 2006; 98::1547.
    [Google Scholar]
  56. Zhou  B, von Gise  A, Ma  Q, Hu  YW and Pu  WT. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev Biol. 2010; 338::251261.
    [Google Scholar]
  57. Hinton  RB and Yutzey  KE. Heart valve structure and function in development and disease. Annu Rev Physiol. 2010 [CrossRef].
    https://doi.org/10.1146/annurev-physiol-012110-142145 [Google Scholar]
  58. Brade  T, Männer  J and Kühl  M. The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart. Cardiovasc Res. 2006; 72::198209.
    [Google Scholar]
  59. Jiao  K   et al. Tgfbeta signaling is required for atrioventricular cushion mesenchyme remodeling during in vivo cardiac development. Development. 2006; 133::45854593.
    [Google Scholar]
  60. Armstrong  EJ and Bischoff  J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004; 95::459470.
    [Google Scholar]
  61. Desgrosellier  JS, Mundell  NA, McDonnell  MA, Moses  HL and Barnett  JV. Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol. 2005; 280::201210.
    [Google Scholar]
  62. Tavares  ALP, Mercado-Pimentel  ME, Runyan  RB and Kitten  GT. TGF beta-mediated RhoA expression is necessary for epithelial-mesenchymal transition in the embryonic chick heart. Dev Dyn. 2006; 235::15891598.
    [Google Scholar]
  63. Ma  L, Lu  MF, Schwartz  RJ and Martin  JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005; 132::5601.
    [Google Scholar]
  64. van Wijk  B, Moorman  AFM and van den Hoff  MJB. Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res. 2007; 74::244255.
    [Google Scholar]
  65. Romano  LA and Runyan  RB. Slug is an essential target of TGFbeta2 signaling in the developing chicken heart. Dev Biol. 2000; 223::91102.
    [Google Scholar]
  66. Romano  LA and Runyan  RB. Slug is a mediator of epithelial-mesenchymal cell transformation in the developing chicken heart. Dev Biol. 1999; 212::243254.
    [Google Scholar]
  67. Galvin  KM   et al. A role for smad6 in development and homeostasis of the cardiovascular system. Nat Genet. 2000; 24::171174.
    [Google Scholar]
  68. McCulley  DJ, Kang  J-O, Martin  JF and Black  BL. BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn. 2008; 237::32003209.
    [Google Scholar]
  69. Gitler  AD, Lu  MM, Jiang  YQ, Epstein  JA and Gruber  PJ. Molecular markers of cardiac endocardial cushion development. Dev Dyn. 2003; 228::643650.
    [Google Scholar]
  70. Liebner  S   et al. Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol. 2004; 166::359367.
    [Google Scholar]
  71. Hurlstone  AFL   et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003; 425::633637.
    [Google Scholar]
  72. Timmerman  LA   et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004; 18::99115.
    [Google Scholar]
  73. Rutenberg  JB   et al. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development. 2006; 133::43814390.
    [Google Scholar]
  74. Kokubo  H, Tomita-Miyagawa  S, Hamada  Y and Saga  Y. Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2. Development. 2007; 134::747755.
    [Google Scholar]
  75. MacGrogan  D, Luna-Zurita  L and de la Pompa  JL. Notch signaling in cardiac valve development and disease. Birth Defects Res. Part A Clin Mol Teratol. 2011; 91::449459.
    [Google Scholar]
  76. Luna-Zurita  L   et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J Clin Invest. 2010; 120::34933507.
    [Google Scholar]
  77. Watanabe  Y   et al. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development. 2006; 133::16251634.
    [Google Scholar]
  78. Rusanescu  G, Weissleder  R and Aikawa  E. Notch signaling in cardiovascular disease and calcification. Curr Cardiol Rev. 2008; 4::148156.
    [Google Scholar]
  79. Fu  Y   et al. RUNX3 maintains the mesenchymal phenotype after termination of the Notch signal. J Biol Chem. 2011; 286::1180311813.
    [Google Scholar]
  80. de la Pompa  JL   et al. Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature. 1998; 392::182186.
    [Google Scholar]
  81. Ranger  AM   et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature. 1998; 392::186190.
    [Google Scholar]
  82. Lange  AW and Yutzey  KE. NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol. 2006; 292::407417.
    [Google Scholar]
  83. Combs  MD and Yutzey  KE. VEGF and RANKL regulation of NFATc1 in heart valve development. Circ Res. 2009; 105::565574.
    [Google Scholar]
  84. Dor  Y   et al. A novel role for VEGF in endocardial cushion formation and its potential contribution to congenital heart defects. Development. 2001; 128::15311538.
    [Google Scholar]
  85. Krenz  M   et al. Role of ERK1/2 signaling in congenital valve malformations in Noonan syndrome. Proc Natl Acad Sci USA. 2008; 105::1893018935.
    [Google Scholar]
  86. Fragale  A, Tartaglia  M, Wu  J and Gelb  BD. Noonan syndrome-associated SHP2/PTPN11 mutants cause EGF-dependent prolonged GAB1 binding and sustained ERK2/MAPK1 activation. Hum Mutat. 2004; 23::267277.
    [Google Scholar]
  87. Araki  T   et al. Noonan syndrome cardiac defects are caused by PTPN11 acting in endocardium to enhance endocardial-mesenchymal transformation. Proc Natl Acad Sci USA. 2009; 106::47364741.
    [Google Scholar]
  88. Meyer  D and Birchmeier  C. Multiple essential functions of neuregulin in development. Nature. 1995; 378::386390.
    [Google Scholar]
  89. Sibilia  M   et al. Mice humanised for the EGF receptor display hypomorphic phenotypes in skin, bone and heart. Development. 2003; 130::45154525.
    [Google Scholar]
  90. Jackson  LF   et al. Defective valvulogenesis in HB-EGF and TACE-null mice is associated with aberrant BMP signaling. EMBO J. 2003; 22::27042716.
    [Google Scholar]
  91. Chen  B   et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet. 2000; 24::296299.
    [Google Scholar]
  92. Chan  R, Hardy  WR, Laing  MA, Hardy  SE and Muller  WJ. The catalytic activity of the ErbB-2 receptor tyrosine kinase is essential for embryonic development. Mol Cell Biol. 2002; 22::10731078.
    [Google Scholar]
  93. Sanchez-Soria  P and Camenisch  TD. ErbB signaling in cardiac development and disease. Semin Cell Dev Biol. 2010; 21::929935.
    [Google Scholar]
  94. Zhou  H-M   et al. Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol. 2004; 24::96104.
    [Google Scholar]
  95. Horiuchi  K, Zhou  H-ming, Kelly  K, Manova  K and Blobel  CP. Evaluation of the contributions of ADAMs 9,12,15,17, and 19 to heart development and ectodomain shedding of neuregulins h1 and h2. Dev Biol. 2005; 283::459471.
    [Google Scholar]
  96. Scherz  PJ, Huisken  J, Sahai-Hernandez  P and Stainier  DYR. High-speed imaging of developing heart valves reveals interplay of morphogenesis and function. Development. 2008; 135::11791187.
    [Google Scholar]
  97. Hove  JR   et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature. 2003; 421::172177.
    [Google Scholar]
  98. Yashiro  K, Shiratori  H and Hamada  H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature. 2007; 450::285288.
    [Google Scholar]
  99. Vermot  J   et al. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLoS Biol. 2009; 7::e1000246.
    [Google Scholar]
  100. Markwald  RR, Norris  RA, Moreno-Rodriguez  R and Levine  RA. Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann N Y Acad Sci. 2010; 1188::177183.
    [Google Scholar]
  101. Wirrig  EE and Yutzey  KE. Transcriptional regulation of heart valve development and disease. Cardiovasc Pathol. 2011; 20::162167.
    [Google Scholar]
  102. Cripe  L, Andelfinger  G, Martin  LJ, Shooner  K and Benson  DW. Bicuspid aortic valve is heritable. J Am Coll Cardiol. 2004; 44::138143.
    [Google Scholar]
  103. Hinton  RB   et al. Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol. 2007; 50::15901595.
    [Google Scholar]
  104. McBride  KL   et al. Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A. 2005; 134::180186.
    [Google Scholar]
  105. Freed  LA   et al. A locus for autosomal dominant mitral valve prolapse on chromosome 11p15.4. Am J Hum Genet. 2003; 72::15511559.
    [Google Scholar]
  106. Disse  S   et al. Mapping of a first locus for autosomal dominant myxomatous mitral-valve prolapse to chromosome 16p11.2-p12.1. Am J Hum Genet. 1999; 65::12421251.
    [Google Scholar]
  107. Nesta  F   et al. New locus for autosomal dominant mitral valve prolapse on chromosome 13: clinical insights from genetic studies. Circulation. 2005; 112::20222030.
    [Google Scholar]
  108. Grau  JB, Pirelli  L, Yu  P-J, Galloway  AC and Ostrer  H. The genetics of mitral valve prolapse. Clin Genet. 2007; 72::288295.
    [Google Scholar]
  109. Kyndt  F   et al. Mapping of X-linked myxomatous valvular dystrophy to chromosome Xq28. Am J Hum Genet. 1998; 62::627632.
    [Google Scholar]
  110. Klaus  A, Saga  Y, Taketo  MM, Tzahor  E and Birchmeier  W. Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA. 2007; 104::1853118536.
    [Google Scholar]
  111. Wang  J, Greene  SB and Martin  JF. BMP signaling in congenital heart disease: New developments and future directions. Birth Defects Res Part A Clin Mol Teratol. 2011; 91::441448.
    [Google Scholar]
  112. Smith  KA   et al. Dominant-negative ALK2 allele associates with congenital heart defects. Circulation. 2009; 119::30623069.
    [Google Scholar]
  113. Joziasse  IC   et al. ALK2 mutation in a patient with Down’s syndrome and a congenital heart defect. Eur J Hum Genet. 2011; 19::389393.
    [Google Scholar]
  114. Wang  J   et al. Atrioventricular cushion transformation is mediated by ALK2 in the developing mouse heart. Dev Biol. 2005; 286::299310.
    [Google Scholar]
  115. Song  L, Fässler  R, Mishina  Y, Jiao  K and Baldwin  HS. Essential functions of Alk3 during AV cushion morphogenesis in mouse embryonic hearts. Dev Biol. 2007; 301::276286.
    [Google Scholar]
  116. Andrabi  S   et al. SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. Am J Med Genet A. 2011; 155::11651169.
    [Google Scholar]
  117. Howe  JR   et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998; 280::10861088.
    [Google Scholar]
  118. Gallione  C   et al. Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP–HHT syndrome. Am J Med Genet A. 2010; 152A::333339.
    [Google Scholar]
  119. Iyer  NK, Burke  CA, Leach  BH and Parambil  JG. SMAD4 mutation and the combined syndrome of juvenile polyposis syndrome and hereditary haemorrhagic telangiectasia. Thorax. 2010; 65::745746.
    [Google Scholar]
  120. Moskowitz  IP   et al. Cardiac-specific transcription factor genes Smad4 and Gata4 cooperatively regulate cardiac valve development. Proc Natl Acad Sci USA. 2011; 108::40064011.
    [Google Scholar]
  121. van de Laar  IMBH   et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011; 43::121126.
    [Google Scholar]
  122. Garg  V   et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005; 437::270274.
    [Google Scholar]
  123. McBride  KL   et al. NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet. 2008; 17::28862893.
    [Google Scholar]
  124. Mohamed  SA   et al. Novel missense mutations (p.T596M and p.P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem Biophys Res Commun. 2006; 345::14601465.
    [Google Scholar]
  125. McKellar  SH   et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007; 134::290296.
    [Google Scholar]
  126. Alagille  D   et al. Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr. 1987; 110::195200.
    [Google Scholar]
  127. Krantz  ID   et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects. Am J Med Genet. 1999; 84::5660.
    [Google Scholar]
  128. Benson  DW   et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest. 1999; 104::15671573.
    [Google Scholar]
  129. Goldmuntz  E, Geiger  E and Benson  DW. NKX2.5 mutations in patients with tetralogy of fallot. Circulation. 2001; 104::25652568.
    [Google Scholar]
  130. McElhinney  DB, Geiger  E, Blinder  J, Benson  DW and Goldmuntz  E. NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol. 2003; 42::16501655.
    [Google Scholar]
  131. Schott  JJ   et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 1998; 281::108111.
    [Google Scholar]
  132. König  K, Will  JC, Berger  F, Müller  D and Benson  DW. Familial congenital heart disease, progressive atrioventricular block and the cardiac homeobox transcription factor gene NKX2.5: identification of a novel mutation. Clin Res Cardiol. 2006; 95::499503.
    [Google Scholar]
  133. Garg  V   et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature. 2003; 424::443447.
    [Google Scholar]
  134. Reamon-Buettner  SM and Borlak  J. TBX5 mutations in non-Holt–Oram syndrome (HOS) malformed hearts. Hum Mutat. 2004; 24::104.
    [Google Scholar]
  135. Sperling  S   et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects. Hum Mutat. 2005; 26::575582.
    [Google Scholar]
  136. Reamon-Buettner  SM and Borlak  J. HEY2 mutations in malformed hearts. Hum Mutat. 2006; 27::118.
    [Google Scholar]
  137. Guo  DC   et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007; 39::14881493.
    [Google Scholar]
  138. Zhu  L   et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006; 38::343349.
    [Google Scholar]
  139. Winston  JB   et al. Heterogeneity of genetic modifiers ensures normal cardiac development. Circulation. 2010; 121::13131321.
    [Google Scholar]
  140. Laforest  B, Andelfinger  G and Nemer  M. Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Invest. 2011 [CrossRef].
    https://doi.org/10.1172/JCI44555 [Google Scholar]
  141. Ewart  AK   et al. Hemizygosity at the elastin locus in a developmental disorder, Williams syndrome. Nat Genet. 1993; 5::1116.
    [Google Scholar]
  142. Li  DY   et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998; 393::276280.
    [Google Scholar]
  143. Li  DY   et al. Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest. 1998; 102::17831787.
    [Google Scholar]
  144. Hinton  RB   et al. Elastin haploinsufficiency results in progressive aortic valve malformation and latent valve disease in a mouse model. Circ Res. 2010; 107::549557.
    [Google Scholar]
  145. Sage  H and Gray  WR. Studies on the evolution of elastin–I. phylogenetic distribution. Comp Biochem Physiol B. 1979; 64::313327.
    [Google Scholar]
  146. Rosenquist  TH, McCoy  JR, Waldo  KL and Kirby  ML. Origin and propagation of elastogenesis in the developing cardiovascular system. Anat Rec. 1988; 221::860871.
    [Google Scholar]
  147. Hinton  RB   et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006; 98::14311438.
    [Google Scholar]
  148. Majava  M   et al. A report on 10 new patients with heterozygous mutations in the COL11A1 gene and a review of genotype-phenotype correlations in type XI collagenopathies. Am J Med Genet A. 2007; 143::258264.
    [Google Scholar]
  149. Van Camp  G   et al. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet. 2006; 79::449457.
    [Google Scholar]
  150. Ahmad  N   et al. Prevalence of mitral valve prolapse in Stickler syndrome. Am J Med Genet A. 2003; 116A::234237.
    [Google Scholar]
  151. Byers  PH, Tsipouras  P, Bonadio  JF, Starman  BJ and Schwartz  RC. Perinatal lethal osteogenesis imperfecta (OI type II): a biochemically heterogeneous disorder usually due to new mutations in the genes for type I collagen. Am J Hum Genet. 1988; 42::237248.
    [Google Scholar]
  152. Superti-Furga  A, Gugler  E, Gitzelmann  R and Steinmann  B. Ehlers–Danlos syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen. J Biol Chem. 1988; 263::62266232.
    [Google Scholar]
  153. Lincoln  J, Florer  JB, Deutsch  GH, Wenstrup  RJ and Yutzey  KE. ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn. 2006; 235::32953305.
    [Google Scholar]
  154. Liu  X, Wu  H, Byrne  M, Krane  S and Jaenisch  R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci USA. 1997; 94::18521856.
    [Google Scholar]
  155. Lucero  HA and Kagan  HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006; 63::23042316.
    [Google Scholar]
  156. Hornstra  IK   et al. Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Biol Chem. 2003; 278::1438714393.
    [Google Scholar]
  157. Mäki  JM   et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 2002; 106::25032509.
    [Google Scholar]
  158. Hurtado  PA   et al. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation. Biochem Biophys Res Commun. 2008; 366::156161.
    [Google Scholar]
  159. Atsawasuwan  P   et al. Lysyl oxidase binds transforming growth factor-beta and regulates its signaling via amine oxidase activity. J Biol Chem. 2008; 283::3422934240.
    [Google Scholar]
  160. Oleggini  R, Gastaldo  N and Di Donato  A. Regulation of elastin promoter by lysyl oxidase and growth factors: cross control of lysyl oxidase on TGF-beta1 effects. Matrix Biol. 2007; 26::494505.
    [Google Scholar]
  161. Giampuzzi  M   et al. Lysyl oxidase activates the transcription activity of human collagene III promoter. possible involvement of Ku antigen. J Biol Chem. 2000; 275::3634136349.
    [Google Scholar]
  162. Liu  X   et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004; 36::178182.
    [Google Scholar]
  163. McLaughlin  PJ   et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol Cell Biol. 2006; 26::17001709.
    [Google Scholar]
  164. Hirai  M   et al. Fibulin-5/DANCE has an elastogenic organizer activity that is abrogated by proteolytic cleavage in vivo. J Cell Biol. 2007; 176::10611071.
    [Google Scholar]
  165. Hanada  K   et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice. Circulation research. 2007; 01::
    [Google Scholar]
  166. Hucthagowder  V   et al. Fibulin-4: a novel gene for an autosomal recessive cutis laxa syndrome. Am J Hum Genet. 2006; 78::10751080.
    [Google Scholar]
  167. Loeys  B   et al. Homozygosity for a missense mutation in fibulin-5 (FBLN5) results in a severe form of cutis laxa. Hum Mol Genet. 2002; 11::21132118.
    [Google Scholar]
  168. Pyeritz  RE and McKusick  VA. The Marfan syndrome: diagnosis and management. N Engl J Med. 1979; 300::772777.
    [Google Scholar]
  169. Dietz  HC   et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991; 352::337339.
    [Google Scholar]
  170. Dietz  HC, Loeys  B, Carta  L and Ramirez  F. Recent progress towards a molecular understanding of Marfan syndrome. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2005; 139::49.
    [Google Scholar]
  171. Ng  CM   et al. TGF-β-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004; 114::15861592.
    [Google Scholar]
  172. Gupta  PA  et al. Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype. Hum Mutat. 2002; 19::3948.
    [Google Scholar]
  173. Putnam  EA, Zhang  H, Ramirez  F and Milewicz  DM. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet. 1995; 11::456458.
    [Google Scholar]
  174. Chaudhry  SS   et al. Mutation of the gene encoding fibrillin-2 results in syndactyly in mice. Hum Mol Genet. 2001; 10::835843.
    [Google Scholar]
  175. Gansner  JM, Madsen  EC, Mecham  RP and Gitlin  JD. Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis. Dev Dyn. 2008; 237::28442861.
    [Google Scholar]
  176. Loeys  BL   et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006; 355::788798.
    [Google Scholar]
  177. Attias  D   et al. Comparison of clinical presentations and outcomes between patients with TGFBR2 and FBN1 mutations in Marfan syndrome and related disorders. Circulation. 2009; 120::25412549.
    [Google Scholar]
  178. Stheneur  C   et al. Identification of 23 TGFBR2 and 6 TGFBR1 gene mutations and genotype-phenotype investigations in 457 patients with Marfan syndrome type I and II, Loeys–Dietz syndrome and related disorders. Hum Mutat. 2008; 29::E284295.
    [Google Scholar]
  179. Kosaki  K   et al. Molecular pathology of Shprintzen–Goldberg syndrome. Am J Med Genet A. 2006; 140::104108. author reply 109–110 .
    [Google Scholar]
  180. Morales  J   et al. Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet. 2009; 85::558568.
    [Google Scholar]
  181. Dagoneau  N   et al. ADAMTS10 mutations in autosomal recessive Weill–Marchesani syndrome. Am J Hum Genet. 2004; 75::801806.
    [Google Scholar]
  182. Kern  CB   et al. Reduced versican cleavage due to Adamts9 haploinsufficiency is associated with cardiac and aortic anomalies. Matrix Biol. 2010; 29::304316.
    [Google Scholar]
  183. Jungers  KA, Le Goff  C, Somerville  RPT and Apte  SS. Adamts9 is widely expressed during mouse embryo development. Gene Expression Patterns. 2005; 5::609617.
    [Google Scholar]
  184. Carta  L   et al. Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem. 2006; 281::80168023.
    [Google Scholar]
  185. Ohno-Jinno  A   et al. Versican and fibrillin-1 form a major hyaluronan-binding complex in the ciliary body. Invest Ophthalmol Vis Sci. 2008; 49::28702877.
    [Google Scholar]
  186. Camenisch  TD, Biesterfeldt  J, Brehm-Gibson  T, Bradley  J and McDonald  JA. Regulation of cardiac cushion development by hyaluronan. Exp Clin Cardiol. 2001; 6::410.
    [Google Scholar]
  187. Camenisch  TD, Schroeder  JA, Bradley  J, Klewer  SE and McDonald  JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2–ErbB3 receptors. Nat Med. 2002; 8::850855.
    [Google Scholar]
  188. Kern  CB   et al. Proteolytic cleavage of versican during cardiac cushion morphogenesis. Dev Dyn. 2006; 235::22382247.
    [Google Scholar]
  189. Kern  CB   et al. Versican proteolysis mediates myocardial regression during outflow tract development. Dev Dyn. 2007; 236::671683.
    [Google Scholar]
  190. Azeloglu  EU, Albro  MB, Thimmappa  VA, Ateshian  GA and Costa  KD. Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta. Am J Physiol Heart Circ Physiol. 2008; 294::H11971205.
    [Google Scholar]
  191. Ramirez  F, Sakai  LY, Rifkin  DB and Dietz  HC. Extracellular microfibrils in development and disease. Cell Mol Life Sci. 2007; 64::24372446.
    [Google Scholar]
  192. Kenagy  RD   et al. Accumulation and loss of extracellular matrix during shear stress-mediated intimal growth and regression in baboon vascular grafts. J Histochem Cytochem. 2005; 53::131140.
    [Google Scholar]
  193. Le Goff  C   et al. ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet. 2008; 40::11191123.
    [Google Scholar]
  194. Le Goff  C and Cormier-Daire  V. Genetic and molecular aspects of acromelic dysplasia. Pediatr Endocrinol Rev. 2009; 6::418423.
    [Google Scholar]
  195. Allali  S   et al. Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia. J Med Genet. 2011; 48::417421.
    [Google Scholar]
  196. Dietz  HC. New therapeutic approaches to mendelian disorders. N Engl J Med. 2010; 363::852863.
    [Google Scholar]
  197. Brooke  BS   et al. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008; 358::27872795.
    [Google Scholar]
  198. Habashi  JP   et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006; 312::117121.
    [Google Scholar]
  199. Habashi  JP   et al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science. 2011; 332::361365.
    [Google Scholar]
  200. Holm  TM   et al. Noncanonical TGFβsignaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science. 2011; 332::358361.
    [Google Scholar]
  201. Hirayama-Yamada  K   et al. Phenotypes with GATA4 or NKX2.5 mutations in familial atrial septal defect. Am J Med Genet A. 2005; 135::4752.
    [Google Scholar]
  202. Sarkozy  A   et al. Spectrum of atrial septal defects associated with mutations of NKX2.5 and GATA4 transcription factors. J Med Genet. 2005; 42::e16.
    [Google Scholar]
  203. Reamon-Buettner  SM and Borlak  J. GATA4 zinc finger mutations as a molecular rationale for septation defects of the human heart. J Med Genet. 2005; 42::e32.
    [Google Scholar]
  204. Pehlivan  T   et al. GATA4 haploinsufficiency in patients with interstitial deletion of chromosome region 8p23.1 and congenital heart disease. Am J Med Genet. 1999; 83::201206.
    [Google Scholar]
  205. Kirk  EP   et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am J Hum Genet. 2007; 81::280291.
    [Google Scholar]
  206. Postma  AV   et al. A gain-of-function TBX5 mutation is associated with atypical Holt–Oram syndrome and paroxysmal atrial fibrillation. Circ Res. 2008; 102::14331442.
    [Google Scholar]
  207. Hart  AW   et al. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet. 2006; 15::24572467.
    [Google Scholar]
  208. Kyndt  F   et al. Mutations in the gene encoding filamin A as a cause for familial cardiac valvular dystrophy. Circulation. 2007; 115::40.
    [Google Scholar]
  209. Dietz  HC   et al. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993; 17::468475.
    [Google Scholar]
  210. Kojuri  J, Razeghinejad  MR and Aslani  A. Cardiac findings in Weill–Marchesani syndrome. Am J Med Genet A. 2007; 143A::20622064.
    [Google Scholar]
  211. Gould  DB   et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005; 308::11671171.
    [Google Scholar]
  212. Richards  AJ   et al. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet. 2000; 67::10831094.
    [Google Scholar]
  213. Richardson  L   et al. EMAGE mouse embryo spatial gene expression database: 2010 update. Nucleic Acids Res. 2010; 38::D703709.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.9
Loading
/content/journals/10.5339/ahcsps.2011.9
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error