1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  • E-ISSN:

There is no abstract available for this article.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.16
2011-12-30
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.16.html?itemId=/content/journals/10.5339/ahcsps.2011.16&mimeType=html&fmt=ahah

References

  1. [1]. El-Hamamsy   I., and Yacoub   MH. . Cellular and molecular mechanisms of thoracic aortic aneurysms. . Nature ReviewsCardiology . 2009; ;6: :
    [Google Scholar]
  2. [2]. Dagum   P, , Green   GR, and Nistal   FJ   et al. Deformational dynamics of the aortic root: modes and physiologic determinants. . Circulation . 1999; ;100: : II54– II62 .
    [Google Scholar]
  3. [3]. Yacoub   MH., , Kilner   PJ., , Birks   EJ., and Misfeld   M. . The aortic outflow and root: a tale of dynamism and crosstalk. . Annals of theThoracic Surgery . 1999; ;68: : S37– S43 .
    [Google Scholar]
  4. [4]. Lansac   E, , Lim   HS, and Shomura   Y   et al. A four-dimensional study of the aortic root dynamics. . Eur J Cardiothorac Surg . 2002; ;22: : 497– 503 .
    [Google Scholar]
  5. [5]. Miller   DC., , Cheng   A., and Dagum   P. . Aortic root dynamics and surgery: from craft to science. . PhilosophicalTransactions of the Royal Society B-Biological Sciences . 2007; ;362: : 1407– 1419 .
    [Google Scholar]
  6. [6]. Higashidate   . . Regulation of the aortic valve opening: In vivo dynamic measurement of aortic valveorifice area. . Journal of Thoracic and Cardiovascular Surgery . 1995; ;110: : 496– 503 .
    [Google Scholar]
  7. [7]. Lansac   E, , Lim   HS, and Shomura   Y   et al. Aortic root dynamics are asymmetric. . J Heart Valve Dis . 2005; ;14: : 400– 407 .
    [Google Scholar]
  8. [8]. Davies   JE., , Parker   KH., , Francis   DP., , Hughes   AD., and Mayet   J. . What is the role of the aorta in directing coronary blood flow?.   Heart . 2008; ;94: : 1545– 1547 .
    [Google Scholar]
  9. [9]. Womersley   JR. . Method for the calculation of velocity, rate of flow and viscous drag in arterieswhen the pressure gradient is known. . Journal of Physiology . 1955; ;127: : 553– 563 .
    [Google Scholar]
  10. [10]. Nakamura   M., , Wada   S., and Yamaguchi   T. . Computational analysis of blood flow in an integrated model of the left ventricleand the aorta. . J Biomech Eng . 2006; ;128: : 837– 843 .
    [Google Scholar]
  11. [11]. Augst   AD., , Barratt   DC., , Hughes   AD., , Glor   FP., , Mc   GTSA., and Xu   XY. . Accuracy and reproducibility of CFD predicted wall shear stress using 3Dultrasound images. . J Biomech Eng . 2003; ;125: : 218– 222 .
    [Google Scholar]
  12. [12]. Glor   FP, , Long   Q, and Hughes   AD   et al. Reproducibility study of magnetic resonance image-based computational fluiddynamics prediction of carotid bifurcation flow. . Annals of Biomedical Engineering . 2003; ;31: : 142– 151 .
    [Google Scholar]
  13. [13]. Kung   EO., , Les   AS., , Medina   F., , Wicker   RB., , McConnell   MV., and Taylor   CA. . In vitro validation of finite-element model of AAA hemodynamics incorporatingrealistic outlet boundary conditions. . J Biomech Eng . 2011; ;133: : 041003.
    [Google Scholar]
  14. [14]. Ku   JP., , Elkins   CJ., and Taylor   CA. . Comparison of CFD and MRI flow and velocities in an in vitro large artery bypassgraft model. . Ann Biomed Eng . 2005; ;33: : 257– 269 .
    [Google Scholar]
  15. [15]. Tan   FPP., , Torii   R., , Borghi   A., , Mohiaddin   RH., , Wood   NB., and Xu   XY. . Fluid–structure interaction analysis of wall stress and flow patterns in a thoracicaortic aneurysm. . International Journal of Applied Mechanics . 2009; ;1: : 179– 199 .
    [Google Scholar]
  16. [16]. Ku   JP, , Draney   MT, and Arko   FR   et al. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. . AnnBiomed Eng . 2002; ;30: : 743– 752 .
    [Google Scholar]
  17. [17]. Malek   AM., , Alper   SL., and Izumo   S. . Hemodynamic shear stress and its role in atherosclerosis. . The Journal of theAmerican Medical Association . 1999; ;282: : 2035– 2042 .
    [Google Scholar]
  18. [18]. Cheng   C, , Helderman   F, and Tempel   D   et al. Large variations in absolute wall shear stress levels within one species and betweenspecies. . Atherosclerosis . 2007; ;195: : 225– 235 .
    [Google Scholar]
  19. [19]. Kilner   PJ., , Yang   GZ., , Mohiaddin   RH., , Firmin   DN., and Longmore   DB. . Helical and retrograde secondary flow patterns in the aortic arch studied bythree-directional magnetic resonance velocity mapping. . Circulation . 1993; ;88: : 2235– 2247 .
    [Google Scholar]
  20. [20]. Long   Q., , Merrifield   R., , Xu   XY., , Kilner   P., , Firmin   DN., and G-Z   Y. . Subject-specific computational simulation of left ventricular flow basedon magnetic resonance imaging. . Proc Inst Mech Eng H . 2008; ;222: : 475– 485 .
    [Google Scholar]
  21. [21]. Faludi   R, , Szulik   M, and D’Hooge   J   et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitralvalves: an in vivo study using echocardiographic particle image velocimetry. . J ThoracCardiovasc Surg . 2010; ;139: : 1501– 1510 .
    [Google Scholar]
  22. [22]. Suo   J., , Oshinski   J., and Giddens   DP. . Effects of wall motion and compliance on flow patterns in the ascending aorta. . Journal of Biomechanical Engineering . 2003; ;125: : 347– 354 .
    [Google Scholar]
  23. [23]. Morbiducci   U, , Ponzini   R, and Rizzo   G   et al. Mechanistic insight into the physiological relevance of helical blood flow in thehuman aorta: an in vivo study. . Biomech Model Mechanobiol . 2011; ;10: : 339– 355 .
    [Google Scholar]
  24. [24]. Ng   AC, , Yiu   KH, and Ewe   SH   et al. Influence of left ventricular geometry and function on aortic annular dimensions asassessed with multi-detector row computed tomography: implications fortranscatheter aortic valve implantation. . Eur Heart J . 2011; ;
    [Google Scholar]
  25. [25]. Burman   ED., , Keegan   J., and Kilner   PJ. . Aortic root measurement by cardiovascular magnetic resonance: specification ofplanes and lines of measurement and corresponding normal values. . Circ CardiovascImaging . 2008; ;1: : 104– 113 .
    [Google Scholar]
  26. [26]. Wille   SO. . Numerical simulations of steady flow inside a three dimensional aortic bifurcationmodel. . J Biomed Eng . 1984; ;6: : 49– 55 .
    [Google Scholar]
  27. [27]. Taylor   TW., and Yamaguchi   T. . Three-dimensional simulation of blood flow in an abdominal aorticaneurysm–steady and unsteady flow cases. . J Biomech Eng . 1994; ;116: : 89– 97 .
    [Google Scholar]
  28. [28]. Wood   NB., , Weston   SJ., , Kilner   PJ., , Gosman   AD., and Firmin   DN. . Combined MR imaging and CFD simulation of flow in the human descending aorta. . J Magn Reson Imaging . 2001; ;13: : 699– 713 .
    [Google Scholar]
  29. [29]. Mori   D., , Liu   H., and Yamaguchi   T. . Computational simulation of flow in the aortic arch - (Influence of the 3-Ddistortion on flows in the ordinary helix circular tube). . Jsme International JournalSeries C-Mechanical Systems Machine Elements and Manufacturing . 2000; ;43: : 862– 866 .
    [Google Scholar]
  30. [30]. Leuprecht   A., , Perktold   K., , Kozerke   S., and Boesiger   P. . Combined CFD and MRI study of blood flow in a human ascending aorta model. . Biorheology . 2002; ;39: : 425– 429 .
    [Google Scholar]
  31. [31]. Black   MM., , Hose   DR., and Lawford   PV. . The origin and significance of secondary flows in the aortic arch. . J Med EngTechnol . 1995; ;19: : 192– 197 .
    [Google Scholar]
  32. [32]. Shahcheraghi   N., , Dwyer   HA., , Cheer   AY., , Barakat   AI., and Rutaganira   T. . Unsteady and three-dimensional simulation of blood flow in the human aortic arch. . J Biomech Eng . 2002; ;124: : 378– 387 .
    [Google Scholar]
  33. [33]. Kito   H., , Yokoyama   C., , Inoue   H., , Tanabe   T., , Nakajima   N., and Sumpio   BE. . Cyclooxygenase expression in bovine aortic endothelial cells exposed to cyclic strain. . Endothelium . 1998; ;6: : 107– 112 .
    [Google Scholar]
  34. [34]. Metzler   SA., , Pregonero   CA., , Butcher   JT., , Burgess   SC., and Warnock   JN. . Cyclic strain regulates pro-inflammatory protein expression in porcine aorticvalve endothelial cells. . J Heart Valve Dis . 2008; ;17: : 571– 577 . discussion 578 .
    [Google Scholar]
  35. [35]. El-Hamamsy   I, , KBalachandran   K, and Yacoub   MH   et al. Endothelium-dependent regulation of the mechanical properties of aortic valvecusps. . Journal of the American College of Cardiology . 2009; ;53: : 1448– 1455 .
    [Google Scholar]
  36. [36]. Role   L., , Bogen   D., , McMahon   TA., and Abelmann   WH. . Regional variations in calculated diastolic wall stress in rat left ventricle. . Am JPhysiol . 1978; ;235: : H247– H250 .
    [Google Scholar]
  37. [37]. Cataloglu   A., , Clark   RE., and Gould   PL. . Stress analysis of aortic valve leaflets with smoothed geometrical data. . J Biomech . 1977; ;10: : 153– 158 .
    [Google Scholar]
  38. [38]. Raghavan   ML., and Vorp   DA. . Toward a biomechanical tool to evaluate rupture potential of abdominal aorticaneurysm: identification of a finite strain constitutive model and evaluation of itsapplicability. . J Biomech . 2000; ;33: : 475– 482 .
    [Google Scholar]
  39. [39]. Gasser   TC., , Ogden   RW., and Holzapfel   GA. . Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. . J R Soc Interface . 2006; ;3: : 15– 35 .
    [Google Scholar]
  40. [40]. Kim   HJ., , Vignon-Clementel   IE., , Coogan   JS., , Figueroa   CA., , Jansen   KE., and Taylor   CA. . Patient-specific modeling of blood flow and pressure in human coronary arteries. . Ann Biomed Eng . 2010; ;38: : 3195– 3209 .
    [Google Scholar]
  41. [41]. Husmann   L, , Leschka   S, and Desbiolles   L   et al. Coronary artery motion and cardiac phases: dependency on heart rate —implications for CT image reconstruction. . Radiology . 2007; ;245: : 567– 576 .
    [Google Scholar]
  42. [42]. Suo   J., , Oshinski   JN., and Giddens   DP. . Blood flow patterns in the proximal human coronary arteries: relationship toatherosclerotic plaque occurrence. . Mol Cell Biomech . 2008; ;5: : 9– 18 .
    [Google Scholar]
  43. [43]. Torii   R, , Keegan   J, and Wood   NB   et al. The effect of dynamic vessel motion on haemodynamic parameters in the rightcoronary. . British Journal of Radiology . 2009; ;82: : S24– S32 .
    [Google Scholar]
  44. [44]. Torii   R, , Keegan   J, and Wood   NB   et al. MR image-based geometric and hemodynamic investigation of the rightcoronary artery with dynamic vessel motion. . Annals of Biomedical Engineering . 2010; ;38: : 2606– 2620 .
    [Google Scholar]
  45. [45]. Yacoub   MH., and El-Hamamsy   I. . The private life of tissue valves. . Nature Reviews Cardiology . 2010; ;7: : 424– 426 .
    [Google Scholar]
  46. [46]. Liu   X, , Weale   P, and Reiter   G   et al. Breathhold time-resolved three-directional MR velocity mapping of aortic flow inpatients after aortic valve-sparing surgery. . Journal of Magnetic Resonance Imaging . 2009; ;29: : 569– 575 .
    [Google Scholar]
  47. [47]. Robicsek   F., and Thubrikar   MJ. . Role of sinus wall compliance in aortic leaflet function. . Am J Cardiol . 1999; ;84: : 944– 946 . A7 .
    [Google Scholar]
  48. [48]. Katayama   S., , Umetani   N., , Sugiura   S., and Hisada   T. . The sinus of Valsalva relieves abnormal stress on aortic valve leaflets byfacilitating smooth closure. . J Thorac Cardiovasc Surg . 2008; ;136: : 1528– 1535 . 1535 e1 .
    [Google Scholar]
  49. [49]. de Tullio   MD., , Pedrizzetti   G., and Verzicco   R. . On the effect of aortic root geometry on the coronary entry-flow after a bileafletmechanical heart valve implant: a numerical study. . Acta Mechanica . 2011; ;216: : 147– 163 .
    [Google Scholar]
  50. [50]. Bakhtiary   F, , Schiemann   M, and Dzemali   O   et al. Stentless bioprostheses improve postoperative coronary flow more than stentedprostheses after valve replacement for aortic stenosis. . J Thorac Cardiovasc Surg . 2006; ;131: : 883– 888 .
    [Google Scholar]
  51. [51]. Bakhtiary   F, , Abolmaali   N, and Dzemali   O   et al. Impact of mechanical and biological aortic valve replacement on coronary perfusion:a prospective, randomized study. . J Heart Valve Dis . 2006; ;15: : 5– 11 . discussion 11 .
    [Google Scholar]
  52. [52]. Cheng   C, , Tampel   D, and van Haperen   R   et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shearstress. . Circulation . 2006; ;113: : 2744– 2753 .
    [Google Scholar]
  53. [53]. Jackson MJ,Wood NB andZhao SZet al.Low wall shear stresspredicts subsequent development of wall hypertrophy in lower limb bypass grafts.Artery Research, In press 2009;.
  54. [54]. Augst   AD, , Ariff   B, , Thom   SA, , Xu   XY, and Hughes   AD   et al. Analysis of complex flow and the relationship between blood pressure, wall shearstress, and intima-media thickness in the human carotid artery. . AmericanJournal of Physiology. Heart and Circulatory Physiology . 2007; ;293: : 1031– 1037 .
    [Google Scholar]
  55. [55]. Ku   DN., , Giddens   DP., , Zarins   CK., and Glagov   S. . Pulsatile flow and atherosclerosis in the human carotid bifurcation, positivecorrelation between plaque location and low and oscillating shear stress. . Arteriosclerosis . 1985; ;5: : 293– 302 .
    [Google Scholar]
  56. [56]. Zureik   M, , Ducimetiere   P, and Touboul   PJ   et al. Common carotid intima-media thickness predicts occurrence of carotidatherosclerotic plaques: longitudinal results from the aging vascular study (EVA)study. . Arterioscler Thromb Vasc Biol . 2000; ;20: : 1622– 1629 .
    [Google Scholar]
  57. [57]. Gijsen   FJ, , Mastik   F, and Schaar   JA   et al. High shear stress induces a strain increase in human coronary plaques over a6-month period. . EuroIntervention . 2011; ;7: : 121– 127 .
    [Google Scholar]
  58. [58]. Cheng   C, , Tempel   D, and van Haperen   R   et al. Shear stress-induced changes in atherosclerotic plaque composition are modulated bychemokines. . J Clin Invest . 2007; ;117: : 616– 626 .
    [Google Scholar]
  59. [59]. Dancu   MB., , Berardi   DE., , Vanden Heuvel   JP., and Tarbell   JM. . Asynchronous shear stress and circumferential strain reduces endothelial NO synthaseand Cyclooxygenase-2 but induces Endothelin-1 gene expression in endothelialcells. . Arteriosclerosis, Thrombosis, and Vascular Biology . 2004; ;24: : 2088– 2094 .
    [Google Scholar]
  60. [60]. Dancu   MB., , Berardi   DE., , Vanden Heuvel   JP., and Tarbell   JM. . Atherogenic endothelial cell eNOS and ET-1 responses to asynchronoushemodynamics are mitigated by conjugated linoleic acid. . Annals of BiomedicalEngineering . 2007; ;35: : 1111– 1119 .
    [Google Scholar]
  61. [61]. Dancu   MB., and Tarbell   JM. . Large negative stress phase angle (SPA) attenuates nitric oxide production inbovine aortic endothelial cells. . Journal of Biomechanical Engineering, Transaction ofASME . 2006; ;128: : 6.
    [Google Scholar]
  62. [62]. Qiu   Y., and Tarbell   JM. . Interaction between wall shear stress and circumferential strain affects endothelialcell biochemical production. . Journal of Vascular Research . 2000; ;37: : 147– 157 .
    [Google Scholar]
  63. [63]. Tada   S., and Tarbell   JM. . A computational study of flow in a compliant carotid bifurcation — stressphase angle correlation with shear stress. . Annals of Biomedical Engineering . 2005; ;33: : 1202– 1212 .
    [Google Scholar]
  64. [64]. Krams   R, , Cheng   C, and Helderman   F   et al. Shear stress is associated with markers of plaque vulnerability and MMP-9 activity. . EuroIntervention . 2006; ;2: : 250– 256 .
    [Google Scholar]
  65. [65]. Vincent   PE., , Plata   AM., , Hunt   AA., , Weinberg   PD., and Sherwin   SJ. . Blood flow in the rabbit aortic arch and descending thoracic aorta. . J R SocInterface . 2011; ;
    [Google Scholar]
  66. [66]. Deck   JD. . Endothelial cell orientation on aortic valve leaflets. . Cardiovasc Res . 1986; ;20: : 760– 767 .
    [Google Scholar]
  67. [67]. Gardin   JM., , Burn   CS., , Childs   WJ., and Henry   WL. . Evaluation of blood flow velocity in the ascending aorta and main pulmonary arteryof normal subjects by Doppler echocardiography. . Am Heart J . 1984; ;107: : 310– 319 .
    [Google Scholar]
  68. [68]. Clark   C. . Turbulent Velocity-Measurements in a Model of Aortic-Stenosis. . Journal ofBiomechanics . 1976; ;9: : 677– 687 .
    [Google Scholar]
  69. [69]. Bonow   RO, , Carabello   BA, and Chatterjee   K   et al. ACC/AHA 2006 guidelines for the management of patients with valvular heartdisease: a report of the American College of Cardiology/American HeartAssociation Task Force on Practice Guidelines (writing Committee to Revise the1998 guidelines for the management of patients with valvular heart disease)developed in collaboration with the Society of Cardiovascular Anesthesiologistsendorsed by the Society for Cardiovascular Angiography and Interventionsand the Society of Thoracic Surgeons. . J Am Coll Cardiol . 2006; ;48: : e1– 148 .
    [Google Scholar]
  70. [70]. Garcia   D., and Kadem   L. . What do you mean by aortic valve area: geometric orifice area, effective orifice area,or gorlin area?.   J Heart Valve Dis . 2006; ;15: : 601– 608 .
    [Google Scholar]
  71. [71]. Seiler   C., and Jenni   R. . Severe aortic stenosis without left ventricular hypertrophy: prevalence, predictors,and short-term follow up after aortic valve replacement. . Heart . 1996; ;76: : 250– 255 .
    [Google Scholar]
  72. [72]. Chambers   J. . The left ventricle in aortic stenosis: evidence for the use of ACE inhibitors. . Heart . 2006; ;92: : 420– 423 .
    [Google Scholar]
  73. [73]. Little   SH., , Chan   KL., and Burwash   IG. . Impact of blood pressure on the Doppler echocardiographic assessment of severity ofaortic stenosis. . Heart . 2007; ;93: : 848– 855 .
    [Google Scholar]
  74. [74]. Otto   CM, , Burwash   IG, and Legget   ME   et al. Prospective study of asymptomatic valvular aortic stenosis. clinical,echocardiographic, and exercise predictors of outcome. . Circulation . 1997; ;95: : 2262– 2270 .
    [Google Scholar]
  75. [75]. Pibarot   P., and Dumesnil   JG. . Prosthesis-patient mismatch. . Aswan Heart Centre Science & Practice Series . 2011; ;7: : http://dx.doi.org/10.5339/ahcsps.2011.7 .
    [Google Scholar]
  76. [76]. Briand   M, , Dumesnil   JG, and Kadem   L   et al. Reduced systemic arterial compliance impacts significantly on left ventricularafterload and function in aortic stenosis. . Journal of the American College ofCardiology . 2005; ;46: : 291– 298 .
    [Google Scholar]
  77. [77]. Viscardi   F, , Vergara   C, and Antiga   L   et al. Comparative finite element model analysis of ascending aortic flow in bicuspid andtricuspid aortic valve. . Artificial Organs . 2010; ;34: : 1114– 1120 .
    [Google Scholar]
  78. [78]. Bauer   M., , Siniawski   H., , Pasic   M., , Schaumann   B., and Hetzer   R. . Different hemodynamic stress of the ascending aorta wall in patients with bicuspidand tricuspid aortic valve. . J Card Surg . 2006; ;21: : 218– 220 .
    [Google Scholar]
  79. [79]. Tadros   TM., , Klein   MD., and Shapira   OM. . Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology,molecular biology, and clinical implications. . Circulation . 2009; ;119: : 880– 890 .
    [Google Scholar]
  80. [80]. Cheng   Z, , Tan   FP, and Riga   CV   et al. Analysis of flow patterns in a patient-specific aortic dissection model. . J BiomechEng . 2010; ;132: : 051007.
    [Google Scholar]
  81. [81]. Clark   C. . Energy losses in flow through stenosed valves. . J Biomech . 1979; ;12: : 737– 746 .
    [Google Scholar]
  82. [82]. Fernandes   SM., , Khairy   P., , Sanders   SP., and Colan   SD. . Bicuspid aortic valve morphology and interventions in the young. . J Am CollCardiol . 2007; ;49: : 2211– 2214 .
    [Google Scholar]
  83. [83]. Schaefer   BM, , Lewin   MB, and Stout   KK   et al. The bicuspid aortic valve: an integrated phenotypic classification of leafletmorphology and aortic root shape. . Heart . 2008; ;94: : 1634– 1638 .
    [Google Scholar]
  84. [84]. Barker   AJ., , Lanning   C., and Shandas   R. . Quantification of hemodynamic wall shear stress in patients with bicuspid aorticvalve using phase-contrast MRI. . Annals of Biomedical Engineering . 2010; ;38: : 788– 800 .
    [Google Scholar]
  85. [85]. Barker   AJ., and Markl   M. . The role of hemodynamics in bicuspid aortic valve disease. . Eur J CardiothoracSurg . 2011; ;39: : 805– 806 .
    [Google Scholar]
  86. [86]. Markl   M., , Wallis   W., and Harloff   A. . Reproducibility of flow and wall shear stress analysis using flow-sensitivefour-dimensional MRI. . J Magn Reson Imaging . 2011; ;33: : 988– 994 .
    [Google Scholar]
  87. [87]. Markl   M, , Chan   FP, and Alley   MT   et al. Time-resolved three-dimensional phase-contrast MRI. . J Magn Reson Imaging . 2003; ;17: : 499– 506 .
    [Google Scholar]
  88. [88]. Weigang   E, , Kari   FA, and Beyersdorf   F   et al. Flow-sensitive four-dimensional magnetic resonance imaging: flow patterns inascending aortic aneurysms. . Eur J Cardiothorac Surg . 2008; ;34: : 11– 16 .
    [Google Scholar]
  89. [89]. Adham   M, , Gournier   JP, and Favre   JP   et al. Mechanical characteristics of fresh and frozen human descending thoracic aorta. . JSurg Res . 1996; ;64: : 32– 34 .
    [Google Scholar]
  90. [90]. Vorp   DA., , Schiro   BJ., , Ehrlich   MP., , Juvonen   TS., , Ergin   MA., and Griffith   BP. . Effect of aneurysm on the tensile strength and biomechanical behavior of theascending thoracic aorta. . Ann Thorac Surg . 2003; ;75: : 1210– 1214 .
    [Google Scholar]
  91. [91]. Sommer   G., , Gasser   TC., , Regitnig   P., , Auer   M., and Holzapfel   GA. . Dissection properties of the human aortic media: an experimental study. . J BiomechEng . 2008; ;130: : 021007.
    [Google Scholar]
  92. [92]. Doyle   BJ., , Cloonan   AJ., , Walsh   MT., , Vorp   DA., and McGloughlin   TM. . Identification of rupture locations in patient-specific abdominal aortic aneurysmsusing experimental and computational techniques. . J Biomech . 2010; ;43: : 1408– 1416 .
    [Google Scholar]
  93. [93]. Malkawi   AH., , Hinchliffe   RJ., , Xu   Y., , Holt   PJ., , Loftus   IM., and Thompson   MM. . Patient-specific biomechanical profiling in abdominal aortic aneurysm developmentand rupture. . J Vasc Surg . 2010; ;52: : 480– 488 .
    [Google Scholar]
  94. [94]. Maier   A., , Gee   MW., , Reeps   C., , Pongratz   J., , Eckstein   HH., and Wall   WA. . A comparison of diameter, wall stress, and rupture potential index for abdominalaortic aneurysm rupture risk prediction. . Ann Biomed Eng . 2010; ;38: : 3124– 3134 .
    [Google Scholar]
  95. [95]. Vande Geest   JP., , Di Martino   ES., , Bohra   A., , Makaroun   MS., and Vorp   DA. . A biomechanics-based rupture potential index for abdominal aortic aneurysm riskassessment: demonstrative application. . Ann N Y Acad Sci . 2006; ;1085: : 11– 21 .
    [Google Scholar]
  96. [96]. Rachev   A. . Theoretical study of the effect of stress-dependent remodeling on arterial geometryunder hypertensive conditions. . J Biomech . 1997; ;30: : 819– 827 .
    [Google Scholar]
  97. [97]. Sabbah   HN., , Hamid   MS., and Stein   PD. . Mechanical stresses on closed cusps of porcine bioprosthetic valves: correlation withsites of calcification. . Ann Thorac Surg . 1986; ;42: : 93– 96 .
    [Google Scholar]
  98. [98]. Thubrikar   MJ., , Aouad   J., and Nolan   SP. . Patterns of calcific deposits in operatively excised stenotic or purely regurgitantaortic valves and their relation to mechanical stress. . Am J Cardiol . 1986; ;58: : 304– 308 .
    [Google Scholar]
  99. [99]. Hamid   MS., , Sabbah   HN., and Stein   PD. . Vibrational analysis of bioprosthetic heart valve leaflets using numerical models:effects of leaflet stiffening, calcification, and perforation. . Circ Res . 1987; ;61: : 687– 694 .
    [Google Scholar]
  100. [100]. Speelman   L, , Bohra   A, and Bosboom   EM   et al. Effects of wall calcifications in patient-specific wall stress analyses of abdominalaortic aneurysms. . J Biomech Eng . 2007; ;129: : 105– 109 .
    [Google Scholar]
  101. [101]. Walraevens   J., , Willaert   B., , De Win   G., , Ranftl   A., , De Schutter   J., and Sloten   JV. . Correlation between compression, tensile and tearing tests on healthy and calcifiedaortic tissues. . Medical Engineering & Physics . 2008; ;30: : 1098– 1104 .
    [Google Scholar]
  102. [102]. Conti   CA, , Della Corte   A, and Votta   E   et al. Biomechanical implications of the congenital bicuspid aortic valve: a finite elementstudy of aortic root function from in vivo data. . J Thorac Cardiovasc Surg . 2010; ;140: : 890– 896 . 896 e1–2 .
    [Google Scholar]
  103. [103]. Grande   KJ., , Cochran   RP., , Reinhall   PG., and Kunzelman   KS. . Mechanisms of aortic valve incompetence: finite element modeling of aortic rootdilatation. . Ann Thorac Surg . 2000; ;69: : 1851– 1857 .
    [Google Scholar]
  104. [104]. Ross   DN. . Replacement of aortic and mitral valves with a pulmonary autograft. . Lancet . 1967; ;2: : 956– 958 .
    [Google Scholar]
  105. [105]. El-Hamamsy   I, , Eryigit   Z, and Stevens   L   et al. Long-term outcomes after autograft versus homograft aortic root replacementin adults with aortic valve disease: a randomised controlled trial. . Lancet . 2010; ;376: : 524– 531 .
    [Google Scholar]
  106. [106]. El-Hamamsy   I, , Clark   L, and Stevens   LM   et al. Late outcomes following freestyle versus homograft aortic root replacement: Resultsfrom a prospective randomized trial. . Journal of the American College of Cardiology . 2010; ;55: : 368– 376 .
    [Google Scholar]
  107. [107]. Elefteriades   JA. . Should we abandon homografts?.   Journal of the American College of Cardiology . 2010; ;55: : 377– 378 .
    [Google Scholar]
  108. [108]. Wilhelmi   MH. . Long-term cardiac allogreaft valves after heart transplant are functionally andstructurally preserved, in contrast to homografts and bioprosthesis. . Journal of HeartValve Disease . 2006; ;15: : 777– 782 .
    [Google Scholar]
  109. [109]. Travis   BR., , Christensen   TD., , Smerup   M., , Olsen   MS., , Hasenkam   JM., and Nygaard   H. . In-vivo turbulent stresses of bileaflet prosthesis leakage jets. . J Heart Valve Dis . 2005; ;14: : 644– 656 .
    [Google Scholar]
  110. [110]. Dumont   K., , Vierendeels   J., , Kaminsky   R., , van Nooten   G., , Verdonck   P., and Bluestein   D. . Comparison of the hemodynamic and thrombogenic performance of two bileafletmechanical heart valves using a CFD/FSI model. . J Biomech Eng . 2007; ;129: : 558– 565 .
    [Google Scholar]
  111. [111]. Yoganathan   AP., , Sung   HW., , Woo   YR., and Jones   M. . In vitro velocity and turbulence measurements in the vicinity of three newmechanical aortic heart valve prostheses: Bjork–Shiley monostrut, omni-carbon, andduromedics. . J Thorac Cardiovasc Surg . 1988; ;95: : 929– 939 .
    [Google Scholar]
  112. [112]. Walker   PG., and Yoganathan   AP. . In vitro pulsatile flow hemodynamics of five mechanical aortic heart valveprostheses. . Eur J Cardiothorac Surg . 1992; ;6: : Suppl 1 , S113– S123 .
    [Google Scholar]
  113. [113]. de Tullio   MD., , Pascazio   G., , Weltert   L., , De Paulis   R., and Verzicco   R. . Evaluation of prosthetic-valved devices by means of numerical simulations. . PhilosTransact A Math Phys Eng Sci . 2011; ;369: : 2502– 2509 .
    [Google Scholar]
  114. [114]. King   MJ., , Corden   J., , David   T., and Fisher   J. . A three-dimensional, time-dependent analysis of flow through a bileaflet mechanicalheart valve: comparison of experimental and numerical results. . J Biomech . 1996; ;29: : 609– 618 .
    [Google Scholar]
  115. [115]. Ge   L., , Dasi   LP., , Sotiropoulos   F., and Yoganathan   AP. . Characterization of hemodynamic forces induced by mechanical heart valves:Reynolds vs. viscous stresses. . Ann Biomed Eng . 2008; ;36: : 276– 297 .
    [Google Scholar]
  116. [116]. Matsue   H., , Sawa   Y., , Matsumiya   G., , Matsuda   H., and Hamada   S. . Mid-term results of freestyle aortic stentless bioprosthetic valve: clinicalimpact of quantitative analysis of in-vivo three-dimensional flow velocityprofile by magnetic resonance imaging. . J Heart Valve Dis . 2005; ;14: : 630– 636 .
    [Google Scholar]
  117. [117]. Melina   G., , Mitchell   A., , Amrani   M., , Khaghani   A., and Yacoub   MH. . Transvalvular velocities after full aortic root replacement: results from aprospective randomized trial between the homograft and the MedtronicFreestyle bioprosthesis. . J Heart Valve Dis . 2002; ;11: : 54– 58 . discussion 58–9 .
    [Google Scholar]
  118. [118]. Dumesnil   JG, , LeBlanc   MH, and Cartier   PC   et al. Hemodynamic features of the freestyle aortic bioprosthesis compared with stentedbioprosthesis. . Ann Thorac Surg . 1998; ;66: : S130– S133 .
    [Google Scholar]
  119. [119]. Steinbruchel   DA., , Hasenkam   JM., , Nygaard   H., , Riis   CM., and Sievers   HH. . Blood velocity patterns after aortic valve replacement with a pulmonary autograft. . Eur J Cardiothorac Surg . 1997; ;12: : 873– 875 .
    [Google Scholar]
  120. [120]. Lupinetti   FM., , Duncan   BW., , Lewin   M., , Dyamenahalli   U., and Rosenthal   GL. . Comparison of autograft and allograft aortic valve replacement in children. . JThorac Cardiovasc Surg . 2003; ;126: : 240– 246 .
    [Google Scholar]
  121. [121]. Jin   XY., , Zhang   ZM., , Gibson   DG., , Yacoub   MH., and Pepper   JR. . Effects of valve substitute on changes in left ventricular function and hypertrophyafter aortic valve replacement. . Ann Thorac Surg . 1996; ;62: : 683– 690 .
    [Google Scholar]
  122. [122]. Silberman   S, , Shaheen   J, and Merin   O   et al. Exercise hemodynamics of aortic prostheses: comparison between stentlessbioprostheses and mechanical valves. . Ann Thorac Surg . 2001; ;72: : 1217– 1221 .
    [Google Scholar]
  123. [123]. Porter   GF., , Skillington   PD., , Bjorksten   AR., , Morgan   JG., , Yapanis   AG., and Grigg   LE. . Exercise hemodynamic performance of the pulmonary autograft following the Rossprocedure. . J Heart Valve Dis . 1999; ;8: : 516– 521 .
    [Google Scholar]
  124. [124]. Luciani   GB., , Viscardi   F., , Puppini   G., , Faggian   G., and Mazzucco   A. . Aortic root physiology late after a “perfect” ross operation: magnetic resonanceimaging study of three operative techniques. . Artif Organs . 2011; ;
    [Google Scholar]
  125. [125]. Peskin   CS., and McQueen   DM. . A three-dimensional computational method for blood flow in the heart. I. Immersedelastic fibers in a viscous incompressible fluid. . Journal of Computational Physics . 1989; ;81: : 372– 405 .
    [Google Scholar]
  126. [126]. Peskin CS andMcQueen DM. A three-dimensional computational method for blood flow in the heart. II. contractile fibers. 1989;82:289–297.
  127. [127]. Griffith   BE., , Luo   XY., , McQueen   DM., and Peskin   CS. . Simulating the fluid dynamics of natural and prosthetic heart valves using theimmersed boundary method. . International Journal of Applied Mechanics . 2009; ;1: : 137– 177 .
    [Google Scholar]
  128. [128]. Weinberg   EJ., , Shahmirzadi   D., and Mofrad   MR. . On the multiscale modeling of heart valve biomechanics in health and disease. . Biomech Model Mechanobiol . 2010; ;9: : 373– 387 .
    [Google Scholar]
  129. [129]. Shadden   SC., , Astorino   M., and Gerbeau   JF. . Computational analysis of an aortic valve jet with Lagrangian coherent structures. . Chaos . 2010; ;20: :
    [Google Scholar]
  130. [130]. Ranga   A., , Bouchot   O., , Mongrain   R., , Ugolini   P., and Cartier   R. . Computational simulations of the aortic valve validated by imaging data: evaluationof valve-sparing techniques. . Interact Cardiovasc Thorac Surg . 2006; ;5: : 373– 378 .
    [Google Scholar]
  131. [131]. De Hart   J., , Peters   GW., , Schreurs   PJ., and Baaijens   FP. . A three-dimensional computational analysis of fluid–structure interaction in theaortic valve. . J Biomech . 2003; ;36: : 103– 112 .
    [Google Scholar]
  132. [132]. De Hart   J., , Peters   GW., , Schreurs   PJ., and Baaijens   FP. . Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets duringsystole. . J Biomech . 2004; ;37: : 303– 311 .
    [Google Scholar]
  133. [133]. Graeter   TP., , Kindermann   M., , Fries   R., , Langer   F., and Schafers   HJ. . Comparison of aortic valve gradient during exercise after aortic valve reconstruction. . Chest . 2000; ;118: : 1271– 1277 .
    [Google Scholar]
  134. [134]. Leyh   RG., , Schmidtke   C., , Sievers   HH., and Yacoub   MH. . Opening and closing characteristics of the aortic valve after different types ofvalve-preserving surgery. . Circulation . 1999; ;100: : 2153– 2160 .
    [Google Scholar]
  135. [135]. Fries   R, , Graeter   T, and Aicher   D   et al. In vitro comparison of aortic valve movement after valve-preserving aorticreplacement. . J Thorac Cardiovasc Surg . 2006; ;132: : 32– 37 .
    [Google Scholar]
  136. [136]. Frydrychowicz   A., , Berger   A., , Stalder   AF., and Markl   M. . Preliminary results by flow-sensitive magnetic resonance imaging after Tiron DavidI procedure with an anatomically shaped ascending aortic graft. . Interact CardiovascThorac Surg . 2009; ;9: : 155– 158 .
    [Google Scholar]
  137. [137]. Roes   SD, , Hammer   S, and van der Geest   RJ   et al. Flow assessment throught four heart valves simultaneously using 3-dimensional3-directional velocity-encoded magnetic resonance imaging with retrospective vavletracking in healthy volunteers and patients with valvular regurgitation. . InvestigativeRadiology . 2009; ;44: : 669– 675 .
    [Google Scholar]
  138. [138]. Brandts   A, , Bertini   M, and van Dijk   EJ   et al. Left ventricular diastolic function assessment from three-dimensional three-directionalvelocity-encoded MRI with retrospective valve tracking. . J Magn Reson Imaging . 2011; ;33: : 312– 319 .
    [Google Scholar]
  139. [139]. Dowsey   AW., , Keegan   J., , Lerotic   M., , Thom   SA., , Firmin   DA., and Yang   GZ. . Motion-compensated MR valve imaging with COMB tag tracking andsuper-resolution enhancement. . Medical Image Analysis . 2007; ;11: : 478– 491 .
    [Google Scholar]
  140. [140]. Grande-Allen   KJ., , Cochran   RP., , Reinhall   PG., and Kunzelman   KS. . Re-creation of sinuses is important for sparing the aortic valve: a finite elementstudy. . J Thorac Cardiovasc Surg . 2000; ;119: : 753– 763 .
    [Google Scholar]
  141. [141]. Grande-Allen   KJ., , Cochran   RP., , Reinhall   PG., and Kunzelman   KS. . Finite-element analysis of aortic valve-sparing: influence of graft shape andstiffness. . IEEE Transactions on Biomedical Engineering . 2001; ;48: : 647– 659 .
    [Google Scholar]
  142. [142]. Weltert   L., , De Paulis   R., , Scaffa   R., , Maselli   D., , Bellisario   A., and D’Alessandro   S. . Re-creation of a sinuslike graft expansion in Bentall procedure reduces stress at thecoronary button anastomoses: a finite element study. . J Thorac Cardiovasc Surg . 2009; ;137: : 1082– 1087 .
    [Google Scholar]
  143. [143]. Matthews   PB, , Azadani   AN, and Jhun   CS   et al. Comparison of porcine pulmonary and aortic root material properties. . Ann ThoracSurg . 2010; ;89: : 1981– 1988 .
    [Google Scholar]
  144. [144]. Matthews   PB, , Jhun   CS, and Yaung   S   et al. Finite element modeling of the pulmonary autograft at systemic pressure beforeremodeling. . J Heart Valve Dis . 2011; ;20: : 45– 52 .
    [Google Scholar]
  145. [145]. Carr-White   GS, , Afoke   A, and Birks   EJ   et al. Aortic root characteristics of human pulmonary autografts. . Circulation . 2000; ;102: : III-15– III-21 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.16
Loading
/content/journals/10.5339/ahcsps.2011.16
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error