1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  • E-ISSN:

Abstract

Abstract

The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.11
2011-12-29
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.11.html?itemId=/content/journals/10.5339/ahcsps.2011.11&mimeType=html&fmt=ahah

References

  1. [1]. Männer   J. . The development of pericardial villi in the chick embryo. . Anat Embryol . 1992; ;186: : 379– 385 .
    [Google Scholar]
  2. [2]. Männer   J. . Experimental study on the formation of the epicardium in chick embryos. . AnatEmbryol . 1993; ;187: : 281– 289 .
    [Google Scholar]
  3. [3]. Rossi   JM., , Dunn   NR., , Hogan   BL., and Zaret   KS. . Distinct mesodermal signals, including BMPs from the septum transversummesenchyme, are required in combination for hepatogenesis from the endoderm. . Genes Dev . 2001; ;15: : 1998– 2009 .
    [Google Scholar]
  4. [4]. Ishii   Y., , Langberg   JD., , Hurtado   R., , Lee   S., and Mikawa   T. . Induction of proepicardial marker gene expression by the liver bud. . Development . 2007; ;134: : 3627– 3637 .
    [Google Scholar]
  5. [5]. Schulte   I., , Schlueter   J., , Abu-Issa   R., , Brand   T., and Manner   J. . Morphological and molecular left-right asymmetries in the development of theproepicardium: a comparative analysis on mouse and chick embryos. . Dev Dyn . 2007; ;236: : 684– 695 .
    [Google Scholar]
  6. [6]. Nahirney   PC., , Mikawa   T., and Fischman   DA. . Evidence for an extracellular matrix bridge guiding proepicardial cell migration tothe myocardium of chick embryos. . Dev Dyn . 2003; ;227: : 511– 523 .
    [Google Scholar]
  7. [7]. Olivey   HE., and Svensson   EC. . Epicardial-myocardial signaling directing coronary vasculogenesis. . Circ Res . 2010; ;106: : 818– 832 .
    [Google Scholar]
  8. [8]. Lavine   KJ., and Ornitz   DM. . Shared circuitry: developmental signaling cascades regulate both embryonic andadult coronary vasculature. . Circ Res . 2009; ;104: : 159– 169 .
    [Google Scholar]
  9. [9]. Männer   J., , Perez-Pomares   JM., , Macias   D., and Munoz-Chapuli   R. . The origin, formation and developmental significance of the epicardium: a review. . Cells Tissues Organs . 2001; ;169: : 89– 103 .
    [Google Scholar]
  10. [10]. Mikawa   T., and Brand   T. . Epicardial Lineage: Origins and Fates. . Harvey RP, and Rosenthal N.   (eds), Heart Development and Regeneration . Vol. 1 : Academic Press; . 2010; . 325– 345 .
    [Google Scholar]
  11. [11]. Ho   E., and Shimada   Y. . Formation of the epicardium studied with the scanning electron microscope. . DevBiol . 1978; ;66: : 579– 585 .
    [Google Scholar]
  12. [12]. Schlueter   J., , Manner   J., and Brand   T. . BMP is an important regulator of proepicardial identity in the chick embryo. . DevBiol . 2006; ;295: : 546– 558 .
    [Google Scholar]
  13. [13]. Torlopp   A., , Schlueter   J., and Brand   T. . Role of fibroblast growth factor signaling during proepicardium formation in thechick embryo. . Dev Dyn . 2010; ;239: : 2393– 2403 .
    [Google Scholar]
  14. [14]. Schlueter   J., and Brand   T. . A right-sided pathway involving FGF8/Snai1 controls asymmetric development ofthe proepicardium in the chick embryo. . Proc Natl Acad Sci USA . 2009; ;106: : 7485– 7490 .
    [Google Scholar]
  15. [15]. Isaac   A., , Sargent   MG., and Cooke   J. . Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. . Science . 1997; ;275: : 1301– 1304 .
    [Google Scholar]
  16. [16]. Patel   K., , Isaac   A., and Cooke   J. . Nodal signalling and the roles of the transcription factors SnR and Pitx2 invertebrate left-right asymmetry. . Curr Biol . 1999; ;9: : 609– 612 .
    [Google Scholar]
  17. [17]. Perez-Pomares   JM., , Phelps   A., , Sedmerova   M., and Wessels   A. . Epicardial-like cells on the distal arterial end of the cardiac outflow tract do notderive from the proepicardium but are derivatives of the cephalic pericardium. . DevDyn . 2003; ;227: : 56– 68 .
    [Google Scholar]
  18. [18]. Mikawa   T., and Gourdie   RG. . Pericardial mesoderm generates a population of coronary smooth muscle cellsmigrating into the heart along with ingrowth of the epicardial organ. . Dev Biol . 1996; ;174: : 221– 232 .
    [Google Scholar]
  19. [19]. Dettman   RW., , Denetclaw   W   Jr., , Ordahl   CP., and Bristow   J. . Common epicardial origin of coronary vascular smooth muscle, perivascularfibroblasts, and intermyocardial fibroblasts in the avian heart. . Dev Biol . 1998; ;193: : 169– 181 .
    [Google Scholar]
  20. [20]. Männer   J. . Does the subepicardial mesenchyme contribute myocardioblasts to the myocardiumof the chick embryo heart? a quail-chick chimera study tracing the fate of theepicardial primordium. . Anat Rec . 1999; ;255: : 212– 226 .
    [Google Scholar]
  21. [21]. Perez-Pomares   JM., , Carmona   R., , Gonzalez-Iriarte   M., , Atencia   G., , Wessels   A., and Munoz-Chapuli   R. . Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. . Int J Dev Biol . 2002; ;46: : 1005– 1013 .
    [Google Scholar]
  22. [22]. Poelmann   RE., , Gittenberger-de Groot   AC., , Mentink   MM., , Bokenkamp   R., and Hogers   B. . Development of the cardiac coronary vascular endothelium, studied withantiendothelial antibodies, in chick-quail chimeras. . Circ Res . 1993; ;73: : 559– 568 .
    [Google Scholar]
  23. [23]. Rodgers   LS., , Lalani   S., , Runyan   RB., and Camenisch   TD. . Differential growth and multicellular villi direct proepicardial translocation to thedeveloping mouse heart. . Dev Dyn . 2008; ;237: : 145– 152 .
    [Google Scholar]
  24. [24]. Komiyama   M., , Ito   K., and Shimada   Y. . Origin and development of the epicardium in the mouse embryo. . Anat Embryol . 1987; ;176: : 183– 189 .
    [Google Scholar]
  25. [25]. Van den Eijnde   SM., , Wenink   AC., and Vermeij-Keers   C. . Origin of subepicardial cells in rat embryos. . Anat Rec . 1995; ;242: : 96– 102 .
    [Google Scholar]
  26. [26]. Perez-Pomares   JM., , Macias   D., , Garcia-Garrido   L., and Munoz-Chapuli   R. . Contribution of the primitive epicardium to the subepicardial mesenchyme inhamster and chick embryos. . Dev Dyn . 1997; ;210: : 96– 105 .
    [Google Scholar]
  27. [27]. Sengbusch   JK., , He   W., , Pinco   KA., and Yang   JT. . Dual functions of [alpha]4[beta]1 integrin in epicardial development: initialmigration and long-term attachment. . J Cell Biol . 2002; ;157: : 873– 882 .
    [Google Scholar]
  28. [28]. Hirose   T., , Karasawa   M., , Sugitani   Y., , Fujisawa   M., , Akimoto   K., , Ohno   S., and Noda   T. . PAR3 is essential for cyst-mediated epicardial development by establishing apicalcortical domains. . Development . 2006; ;133: : 1389– 1398 .
    [Google Scholar]
  29. [29]. Nesbitt   T., , Lemley   A., , Davis   J., , Yost   MJ., , Goodwin   RL., and Potts   JD. . Epicardial development in the rat: a new perspective. . Microsc Microanal . 2006; ;12: : 390– 398 .
    [Google Scholar]
  30. [30]. Schlueter   J., and Brand   T. . Left-right axis development: examples of similar and divergent strategies to generateasymmetric morphogenesis in chick and mouse embryos. . Cytogenet Genome Res . 2007; ;117: : 256– 267 .
    [Google Scholar]
  31. [31]. Meyers   EN., and Martin   GR. . Differences in left-right axis pathways in mouse and chick: functions of FGF8 andSHH. . Science . 1999; ;285: : 403– 406 .
    [Google Scholar]
  32. [32]. Tanaka   Y., , Okada   Y., and Hirokawa   N. . FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftwardnodal flow is critical for left-right determination. . Nature . 2005; ;435: : 172– 177 .
    [Google Scholar]
  33. [33]. Jahr   M., , Schlueter   J., , Brand   T., and Manner   J. . Development of the proepicardium in Xenopus laevis. . Dev Dyn . 2008; ;237: : 3088– 3096 .
    [Google Scholar]
  34. [34]. Fransen   ME., and Lemanski   LF. . Epicardial development in the axolotl, Ambystoma mexicanum. . Anat Rec . 1990; ;226: : 228– 236 .
    [Google Scholar]
  35. [35]. Liu   J., and Stainier   DY. . Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. . Circ Res . 2010; ;106: : 1818– 1828 .
    [Google Scholar]
  36. [36]. Serluca   FC. . Development of the proepicardial organ in the zebrafish. . Dev Biol . 2008; ;315: : 18– 27 .
    [Google Scholar]
  37. [37]. Icardo   JM., , Guerrero   A., , Duran   AC., , Colvee   E., , Domezain   A., and Sans-Coma   V. . The development of the epicardium in the sturgeon Acipenser naccarii. . Anat Rec . 2009; ;292: : 1593– 1601 .
    [Google Scholar]
  38. [38]. Pombal   MA., , Carmona   R., , Megias   M., , Ruiz   A., , Perez-Pomares   JM., and Munoz-Chapuli   R. . Epicardial development in lamprey supports an evolutionary origin of the vertebrateepicardium from an ancestral pronephric external glomerulus. . Evol Dev . 2008; ;10: : 210– 216 .
    [Google Scholar]
  39. [39]. Viragh   S., and Challice   CE. . The origin of the epicardium and the embryonic myocardial circulation in themouse. . Anat Rec . 1981; ;201: : 157– 168 .
    [Google Scholar]
  40. [40]. Viragh   S., , Gittenberger-de Groot   AC., , Poelmann   RE., and Kalman   F. . Early development of quail heart epicardium and associated vascular and glandularstructures. . Anat Embryol . 1993; ;188: : 381– 393 .
    [Google Scholar]
  41. [41]. Greulich   F., , Rudat   C., and Kispert   A. . Mechanisms of T-box gene function in the developing heart. . Cardiovasc Res . 2011; ;91: : 212– 222 .
    [Google Scholar]
  42. [42]. Haenig   B., and Kispert   A. . Analysis of TBX18 expression in chick embryos. . Dev Genes Evol . 2004; ;214: : 407– 411 .
    [Google Scholar]
  43. [43]. Kraus   F., , Haenig   B., and Kispert   A. . Cloning and expression analysis of the mouse T-box gene Tbx18. . Mech Dev . 2001; ;100: : 83– 86 .
    [Google Scholar]
  44. [44]. Moore   AW., , McInnes   L., , Kreidberg   J., , Hastie   ND., and Schedl   A. . YAC complementation shows a requirement for Wt1 in the development ofepicardium, adrenal gland and throughout nephrogenesis. . Development . 1999; ;126: : 1845– 1857 .
    [Google Scholar]
  45. [45]. von Gise A, Zhou B, Honor LB, Ma Q, Petryk A and Pu WT.WT1 regulates epicardial epithelial to mesenchymal transition through beta-cateninand retinoic acid signaling pathways. Dev Biol. 2011 [in press].
  46. [46]. Martinez-Estrada   OM., , Lettice   LA., , Essafi   A., , Guadix   JA., , Slight   J., , Velecela   E., , V   J., , Hall   PS., , Reichmann   P., , Devenney   N., , Hohenstein   RE., , Hosen   R., , Hill   ND., , Munoz-Chapuli   ., and Hastie   . . Wt1 is required for cardiovascular progenitor cell formation through transcriptionalcontrol of Snail and E-cadherin. . Nature Genet . 2010; ;42: : 89– 93 .
    [Google Scholar]
  47. [47]. Guadix   JA., , Ruiz-Villalba   A., , Lettice   L., , Velecela   V., , Munoz-Chapuli   R., , Hastie   ND., , Perez-Pomares   JM., and Martinez-Estrada   OM. . Wt1 controls retinoic acid signalling in embryonic epicardium throughtranscriptional activation of Raldh2. . Development . 2011; ;138: : 1093– 1097 .
    [Google Scholar]
  48. [48]. Carmona   R., , Gonzalez-Iriarte   M., , Perez-Pomares   JM., and Munoz-Chapuli   R. . Localization of the Wilm’s tumour protein WT1 in avian embryos. . Cell Tissue Res . 2001; ;303: : 173– 186 .
    [Google Scholar]
  49. [49]. Perez-Pomares   JM., , Phelps   A., , Sedmerova   M., , Carmona   R., , Gonzalez-Iriarte   M., , Munoz-Chapuli   R., and Wessels   A. . Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in theembryonic avian heart: a model for the regulation of myocardial and valvuloseptaldevelopment by epicardially derived cells (EPDCs). . Dev Biol . 2002; ;247: : 307– 326 .
    [Google Scholar]
  50. [50]. Robb   L., , Mifsud   L., , Hartley   L., , Biben   C., , Copeland   NG., , Gilbert   DJ., , Jenkins   NA., and Harvey   RP. . epicardin: A novel basic helix-loop-helix transcription factor gene expressed inepicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut,kidney, and gonads. . Dev Dyn . 1998; ;213: : 105– 113 .
    [Google Scholar]
  51. [51]. Funato   N., , Ohyama   K., , Kuroda   T., and Nakamura   M. . Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppressesdifferentiation by negative regulation of transcription. . J Biol Chem . 2003; ;278: : 7486– 7493 .
    [Google Scholar]
  52. [52]. Quaggin   SE., , Vanden Heuvel   GB., and Igarashi   P. . Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymaland glomerular epithelial cells in the developing kidney. . Mech Dev . 1998; ;71: : 37– 48 .
    [Google Scholar]
  53. [53]. Lu   JR., , Bassel-Duby   R., , Hawkins   A., , Chang   P., , Valdez   R., , Wu   H., , Gan   L., , Shelton   JM., , Richardson   JA., and Olson   EN. . Control of facial muscle development by MyoR and capsulin. . Science . 2002; ;298: : 2378– 2381 .
    [Google Scholar]
  54. [54]. Lu   J., , Chang   P., , Richardson   JA., , Gan   L., , Weiler   H., and Olson   EN. . The basic helix-loop-helix transcription factor capsulin controls spleenorganogenesis. . Proc Natl Acad Sci USA . 2000; ;97: : 9525– 9530 .
    [Google Scholar]
  55. [55]. Lu   J., , Richardson   JA., and Olson   EN. . Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors andmesenchyme of visceral organs. . Mech Dev . 1998; ;73: : 23– 32 .
    [Google Scholar]
  56. [56]. Shen MM. Nodal signaling: developmental roles and regulation. 2007; 134:1023-1034.
  57. [57]. Schlange   T., , Schnipkoweit   I., , Andree   B., , Ebert   A., , Zile   MH., , Arnold   HH., and Brand   T. . Chick CFC controls Lefty1 expression in the embryonic midline and nodalexpression in the lateral plate. . Dev Biol . 2001; ;234: : 376– 389 .
    [Google Scholar]
  58. [58]. Gray   PC., , Shani   G., , Aung   K., , Kelber   J., and Vale   W. . Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-betasignaling. . Mol Cell Biol . 2006; ;26: : 9268– 9278 .
    [Google Scholar]
  59. [59]. Gray   PC., , Harrison   CA., and Vale   W. . Cripto forms a complex with activin and type II activin receptors andcan block activin signaling. . Proc Natl Acad Sci USA . 2003; ;100: : 5193– 5198 .
    [Google Scholar]
  60. [60]. Adamson   ED., , Minchiotti   G., and Salomon   DS. . Cripto: a tumor growth factor and more. . J Cell Physiol . 2002; ;190: : 267– 278 .
    [Google Scholar]
  61. [61]. Strizzi   L., , Bianco   C., , Normanno   N., , Seno   M., , Wechselberger   C., , Wallace-Jones   B., , Khan   NI., , Hirota   M., , Sun   Y., , Sanicola   M., and Salomon   DS. . Epithelial mesenchymal transition is a characteristic of hyperplasias and tumorsin mammary gland from MMTV-Cripto-1 transgenic mice. . J Cell Physiol . 2004; ;201: : 266– 276 .
    [Google Scholar]
  62. [62]. Tao   Q., , Yokota   C., , Puck   H., , Kofron   M., , Birsoy   B., , Yan   D., , Asashima   M., , Wylie   CC., , Lin   X., and Heasman   J. . Maternal wnt11 activates the canonical wnt signaling pathway required for axisformation in Xenopus embryos. . Cell . 2005; ;120: : 857– 871 .
    [Google Scholar]
  63. [63]. Kostetskii   I., , Jiang   Y., , Kostetskaia   E., , Yuan   S., , Evans   T., and Zile   M. . Retinoid signaling required for normal heart development regulates GATA-4 in apathway distinct from cardiomyocyte differentiation. . Dev Biol . 1999; ;206: : 206– 218 .
    [Google Scholar]
  64. [64]. Ghatpande   S., , Ghatpande   A., , Zile   M., and Evans   T. . Anterior endoderm is sufficient to rescue foregut apoptosis and heart tubemorphogenesis in an embryo lacking retinoic acid. . Dev Biol . 2000; ;219: : 59– 70 .
    [Google Scholar]
  65. [65]. Ghatpande   S., , Brand   T., , Zile   M., and Evans   T. . Bmp2 and Gata4 function additively to rescue heart tube development in theabsence of retinoids. . Dev Dyn . 2006; ;235: : 2030– 2039 .
    [Google Scholar]
  66. [66]. Xavier-Neto   J., , Shapiro   MD., , Houghton   L., and Rosenthal   N. . Sequential programs of retinoic acid synthesis in the myocardial and epicardiallayers of the developing avian heart. . Dev Biol . 2000; ;219: : 129– 141 .
    [Google Scholar]
  67. [67]. Jenkins   SJ., , Hutson   DR., and Kubalak   SW. . Analysis of the proepicardium-epicardium transition during the malformation of theRXRalpha-/-epicardium. . Dev Dyn . 2005; ;233: : 1091– 1101 .
    [Google Scholar]
  68. [68]. Azambuja   AP., , Portillo-Sanchez   V., , Rodrigues   MV., , Omae   SV., , Schechtman   D., , Strauss   BE., , Costanzi-Strauss   E., , Krieger   JE., , Perez-Pomares   JM., and Xavier-Neto   J. . Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiationto coordinate inner and outer coronary vessel wall morphogenesis. . Circ Res . 2010; ;107: : 204– 216 .
    [Google Scholar]
  69. [69]. Bochmann   L., , Sarathchandra   P., , Mori   F., , Lara-Pezzi   E., , Lazzaro   D., and Rosenthal   N. . Revealing new mouse epicardial cell markers through transcriptomics. . PLoS One . 2010; ;5: : e11429 .
    [Google Scholar]
  70. [70]. Harvey   RP., , Meilhac   SM., and Buckingham   ME. . Landmarks and lineages in the developing heart. . Circ Res . 2009; ;104: : 1235– 1237 .
    [Google Scholar]
  71. [71]. Buckingham   M., , Meilhac   S., and Zaffran   S. . Building the mammalian heart from two sources of myocardial cells. . Nat RevGenet . 2005; ;6: : 826– 835 .
    [Google Scholar]
  72. [72]. Dyer   LA., and Kirby   ML. . The role of secondary heart field in cardiac development. . Dev Biol . 2009; ;336: : 137– 144 .
    [Google Scholar]
  73. [73]. van Wijk   B., , van den Berg   G., , Abu-Issa   R., , Barnett   P., , van der Velden   S., , Schmidt   M., , Ruijter   JM., , Kirby   ML., , Moorman   AF., and van den Hoff   MJ. . Epicardium and myocardium separate from a common precursor pool by crosstalkbetween bone morphogenetic protein- and fibroblast growth factor-signalingpathways. . Circ Res . 2009; ;105: : 431– 441 .
    [Google Scholar]
  74. [74]. Kruithof   BP., , van Wijk   B., , Somi   S., , Kruithof-de Julio   M., , Perez Pomares   JM., , Weesie   F., , Wessels   A., , Moorman   AF., and van den Hoff   MJ. . BMP and FGF regulate the differentiation of multipotential pericardialmesoderm into the myocardial or epicardial lineage. . Dev Biol . 2006; ;295: : 507– 522 .
    [Google Scholar]
  75. [75]. Saga   Y., , Kitajima   S., and Miyagawa-Tomita   S. . Mesp1 expression is the earliest sign of cardiovascular development. . TrendsCardiovasc Med . 2000; ;10: : 345– 352 .
    [Google Scholar]
  76. [76]. Stanley   EG., , Biben   C., , Elefanty   A., , Barnett   L., , Koentgen   F., , Robb   L., and Harvey   RP. . Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a3’UTR-ires-Cre allele of the homeobox gene Nkx2-5. . Int J Dev Biol . 2002; ;46: : 431– 439 .
    [Google Scholar]
  77. [77]. Cai   CL., , Liang   X., , Shi   Y., , Chu   PH., , Pfaff   SL., , Chen   J., and Evans   S. . Isl1 identifies a cardiac progenitor population that proliferates prior todifferentiation and contributes a majority of cells to the heart. . Dev Cell . 2003; ;5: : 877– 889 .
    [Google Scholar]
  78. [78]. Zhou   B., , von Gise   A., , Ma   Q., , Rivera-Feliciano   J., and Pu   WT. . Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. . Biochem Bioph Res Co . 2008; ;375: : 450– 453 .
    [Google Scholar]
  79. [79]. Ma   Q., , Zhou   B., and Pu   WT. . Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter ofCre activity. . Dev Biol . 2008; ;323: : 98– 104 .
    [Google Scholar]
  80. [80]. Barnes   RM., , Firulli   BA., , Conway   SJ., , Vincentz   JW., and Firulli   AB. . Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular,neural crest, extra-embryonic, and lateral mesoderm derivatives. . Dev Dyn . 2010; ;239: : 3086– 3097 .
    [Google Scholar]
  81. [81]. Watt   AJ., , Battle   MA., , Li   J., and Duncan   SA. . GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. . Proc Natl Acad Sci USA . 2004; ;101: : 12573– 12578 .
    [Google Scholar]
  82. [82]. Barnes   RM., , Firulli   BA., , VanDusen   NJ., , Morikawa   Y., , Conway   SJ., , Cserjesi   P., , Vincentz   JW., and Firulli   AB. . Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardialand coronary vessel development. . Circ Res . 2011; ;108: : 940– 949 .
    [Google Scholar]
  83. [83]. Del Monte   G., , Casanova   JC., , Guadix   JA., , Macgrogan   D., , Burch   JB., , Perez-Pomares   JM., and de la Pompa   JL. . Differential notch signaling in the epicardium is required for cardiac inflowdevelopment and coronary vessel morphogenesis. . Circ Res . 2011; ;108: : 824– 836 .
    [Google Scholar]
  84. [84]. Rojas   A., , De Val   S., , Heidt   AB., , Xu   SM., , Bristow   J., and Black   BL. . Gata4 expression in lateral mesoderm is downstream of BMP4 and is activateddirectly by Forkhead and GATA transcription factors through a distal enhancerelement. . Development . 2005; ;132: : 3405– 3417 .
    [Google Scholar]
  85. [85]. Del Monte   G., , Casanova   JC., , Guadix   JA., , Macgrogan   D., , Burch   JB., , Perez-Pomares   JM., and de la Pompa   JL. . Differential notch signaling in the epicardium is required for cardiac inflowdevelopment and coronary vessel morphogenesis. . Circ Res . 2011; ;
    [Google Scholar]
  86. [86]. Grieskamp   T., , Rudat   C., , Ludtke   TH., , Norden   J., and Kispert   A. . Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. . Circ Res . 2011; ;108: : 813– 823 .
    [Google Scholar]
  87. [87]. Urness LD, Bleyl SB, Wright TJ, Moon AM and Mansour SL.Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovasculardevelopment. Dev Biol. 2011 [in press].
  88. [88]. Buermans   HP., , van Wijk   B., , Hulsker   MA., , Smit   NC., , den Dunnen   JT., , van Ommen   GB., , Moorman   AF., , van den Hoff   MJ., and t Hoen   PA. . Comprehensive gene-expression survey identifies wif1 as a modulator ofcardiomyocyte differentiation. . PLoS One . 2010; ;5: : e15504 .
    [Google Scholar]
  89. [89]. Phillips   MD., , Mukhopadhyay   M., , Poscablo   C., and Westphal   H. . Dkk1 and Dkk2 regulate epicardial specification during mouse heart development. . Int J Cardiol . 2011; ;150: : 186– 192 .
    [Google Scholar]
  90. [90]. Merki   E., , Zamora   M., , Raya   A., , Kawakami   Y., , Wang   J., , Zhang   X., , Burch   J., , Kubalak   SW., , Kaliman   P., , Belmonte   JC., , Chien   KR., and Ruiz-Lozano   P. . Epicardial retinoid X receptor alpha is required for myocardial growth andcoronary artery formation. . Proc Natl Acad Sci USA . 2005; ;102: : 18455– 18460 .
    [Google Scholar]
  91. [91]. Zamora   M., , Manner   J., and Ruiz-Lozano   P. . Epicardium-derived progenitor cells require beta-catenin for coronary arteryformation. . Proc Natl Acad Sci USA . 2007; ;104: : 18109– 18114 .
    [Google Scholar]
  92. [92]. Ishii   Y., , Garriock   RJ., , Navetta   AM., , Coughlin   LE., and Mikawa   T. . BMP signals promote proepicardial protrusion necessary for recruitment of coronaryvessel and epicardial progenitors to the heart. . Dev Cell . 2010; ;19: : 307– 316 .
    [Google Scholar]
  93. [93]. Hatcher   CJ., , Diman   NY., , Kim   MS., , Pennisi   D., , Song   Y., , Goldstein   MM., , Mikawa   T., and Basson   CT. . A role for Tbx5 in proepicardial cell migration during cardiogenesis. . PhysiolGenomics . 2004; ;18: : 129– 140 .
    [Google Scholar]
  94. [94]. Yang   JT., , Rayburn   H., and Hynes   RO. . Cell adhesion events mediated by alpha 4 integrins are essential in placental andcardiac development. . Development . 1995; ;121: : 549– 560 .
    [Google Scholar]
  95. [95]. Kwee   L., , Baldwin   HS., , Shen   HM., , Stewart   CL., , Buck   C., , Buck   CA., and Labow   MA. . Defective development of the embryonic and extraembryonic circulatory systems invascular cell adhesion molecule (VCAM-1) deficient mice. . Development . 1995; ;121: : 489– 503 .
    [Google Scholar]
  96. [96]. Wu   M., , Smith   CL., , Hall   JA., , Lee   I., , Luby-Phelps   K., and Tallquist   MD. . Epicardial spindle orientation controls cell entry into the myocardium. . Dev Cell . 2010; ;19: : 114– 125 .
    [Google Scholar]
  97. [97]. Hiruma   T., and Hirakow   R. . Epicardial formation in embryonic chick heart: computer-aided reconstruction,scanning, and transmission electron microscopic studies. . Am J Anat . 1989; ;184: : 129– 138 .
    [Google Scholar]
  98. [98]. Shimada   Y., , Ho   E., and Toyota   N. . Epicardial covering over myocardial wall in the chicken embryo as seenwith the scanning electron microscope. . Scan Electron Microsc . 1981; ; 275– 280 .
    [Google Scholar]
  99. [99]. Pennisi   DJ., , Ballard   VL., and Mikawa   T. . Epicardium is required for the full rate of myocyte proliferation and levels ofexpression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not fortransmural myocardial patterning in the embryonic chick heart. . Dev Dyn . 2003; ;228: : 161– 172 .
    [Google Scholar]
  100. [100]. Lavine   KJ., , Yu   K., , White   AC., , Zhang   X., , Smith   C., , Partanen   J., and Ornitz   DM. . Endocardial and epicardial derived FGF signals regulate myocardial proliferationand differentiation in vivo. . Dev Cell . 2005; ;8: : 85– 95 .
    [Google Scholar]
  101. [101]. Lavine   KJ., , White   AC., , Park   C., , Smith   CS., , Choi   K., , Long   F., , Hui   CC., and Ornitz   DM. . Fibroblast growth factor signals regulate a wave of Hedgehog activation that isessential for coronary vascular development. . Genes Dev . 2006; ;20: : 1651– 1666 .
    [Google Scholar]
  102. [102]. Kreidberg   JA., , Sariola   H., , Loring   JM., , Maeda   M., , Pelletier   J., , Housman   D., and Jaenisch   R. . WT-1 is required for early kidney development. . Cell . 1993; ;74: : 679– 691 .
    [Google Scholar]
  103. [103]. Sucov   HM., , Dyson   E., , Gumeringer   CL., , Price   J., , Chien   KR., and Evans   RM. . RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heartmorphogenesis. . Genes Dev . 1994; ;8: : 1007– 1018 .
    [Google Scholar]
  104. [104]. Kastner   P., , Grondona   JM., , Mark   M., , Gansmuller   A., , LeMeur   M., , Decimo   D., , Vonesch   JL., , Dolle   P., and Chambon   P. . Genetic analysis of RXR alpha developmental function: convergence of RXR andRAR signaling pathways in heart and eye morphogenesis. . Cell . 1994; ;78: : 987– 1003 .
    [Google Scholar]
  105. [105]. Gittenberger-de Groot   AC., , Vrancken Peeters   MP., , Bergwerff   M., , Mentink   MM., and Poelmann   RE. . Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tractcollar and abnormal cardiac septation and coronary formation. . Circ Res . 2000; ;87: : 969– 971 .
    [Google Scholar]
  106. [106]. Manner   J., , Schlueter   J., and Brand   T. . Experimental analyses of the function of the proepicardium using a newmicrosurgical procedure to induce loss-of-proepicardial-function in chick embryos. . Dev Dyn . 2005; ;233: : 1454– 1463 .
    [Google Scholar]
  107. [107]. Wu   H., , Lee   S., , Gao   J., , X   L., and Iruela-Arispe   M. . Inactivation of erythropoietin leads to defects in cardiac morphogenesis. . Development . 1999; ;126: : 3597– 3605 .
    [Google Scholar]
  108. [108]. Stuckmann   I., , Evans   S., and Lassar   AB. . Erythropoietin and retinoic acid, secreted from the epicardium, are required forcardiac myocyte proliferation. . Dev Biol . 2003; ;255: : 334– 349 .
    [Google Scholar]
  109. [109]. Brade   T., , Kumar   S., , Cunningham   TJ., , Chatzi   C., , Zhao   X., , Cavallero   S., , Li   P., , Sucov   HM., , Ruiz-Lozano   P., and Duester   G. . Retinoic acid stimulates myocardial expansion by induction of hepaticerythropoietin which activates epicardial Igf2. . Development . 2011; ;138: : 139– 148 .
    [Google Scholar]
  110. [110]. Li   P., , Cavallero   S., , Gu   Y., , Chen   TH., , Hughes   J., , Hassan   AB., , Bruning   JC., , Pashmforoush   M., and Sucov   HM. . IGF signaling directs ventricular cardiomyocyte proliferation during embryonicheart development. . Development . 2011; ;138: : 1795– 1805 .
    [Google Scholar]
  111. [111]. Mima   T., , Ueno   H., , Fischman   DA., , Williams   LT., and Mikawa   T. . Fibroblast growth factor receptor is required for in vivo cardiac myocyteproliferation at early embryonic stages of heart development. . Proc Natl Acad SciUSA . 1995; ;92: : 467– 471 .
    [Google Scholar]
  112. [112]. Mikawa   T. . Retroviral targeting of FGF and FGFR in cardiomyocytes and coronaryvascular cells during heart development. . Ann N Y Acad Sci . 1995; ;752: : 506– 516 .
    [Google Scholar]
  113. [113]. Chen   TH., , Chang   TC., , Kang   JO., , Choudhary   B., , Makita   T., , Tran   CM., , Burch   JB., , Eid   H., and Sucov   HM. . Epicardial induction of fetal cardiomyocyte proliferation via a retinoicacid-inducible trophic factor. . Dev Biol . 2002; ;250: : 198– 207 .
    [Google Scholar]
  114. [114]. Mikawa   T., and Fischman   DA. . Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronaryvessels. . Proc Natl Acad Sci USA . 1992; ;89: : 9504– 9508 .
    [Google Scholar]
  115. [115]. Vrancken Peeters   MP., , Gittenberger-de Groot   AC., , Mentink   MM., and Poelmann   RE. . Smooth muscle cells and fibroblasts of the coronary arteries derive fromepithelial-mesenchymal transformation of the epicardium. . Anat Embryol . 1999; ;199: : 367– 378 .
    [Google Scholar]
  116. [116]. Red-Horse   K., , Ueno   H., , Weissman   IL., and Krasnow   MA. . Coronary arteries form by developmental reprogramming of venous cells. . Nature . 2010; ;464: : 549– 553 .
    [Google Scholar]
  117. [117]. Grieskamp   T., , Rudat   C., , Ludtke   TH., , Norden   J., and Kispert   A. . Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. . Circ Res . 2011; ;108: : 813– 823 .
    [Google Scholar]
  118. [118]. Cai   CL., , Martin   JC., , Sun   Y., , Cui   L., , Wang   L., , Ouyang   K., , Yang   L., , Bu   L., , Liang   X., , Zhang   X., , Stallcup   WB., , Denton   CP., , McCulloch   A., , Chen   J., and Evans   SM. . A myocardial lineage derives from Tbx18 epicardial cells. . Nature . 2008; ;454: : 104– 108 .
    [Google Scholar]
  119. [119]. Zhou   B., , Ma   Q., , Rajagopal   S., , Wu   SM., , Domian   I., , Rivera-Feliciano   J., , Jiang   D., , von Gise   A., , Ikeda   S., , Chien   KR., and Pu   WT. . Epicardial progenitors contribute to the cardiomyocyte lineage in the developingheart. . Nature . 2008; ;454: : 109– 113 .
    [Google Scholar]
  120. [120]. Guadix   JA., , Carmona   R., , Munoz-Chapuli   R., and Perez-Pomares   JM. . In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial andepicardial cells. . Dev Dyn . 2006; ;235: : 1014– 1026 .
    [Google Scholar]
  121. [121]. Christoffels   VM., , Grieskamp   T., , Norden   J., , Mommersteeg   MT., , Rudat   C., and Kispert   A. . Tbx18 and the fate of epicardial progenitors. . Nature . 2009; ;458: : E8– E9 . discussionE9–10 .
    [Google Scholar]
  122. [122]. Kikuchi   K., , Gupta   V., , Wang   J., , Holdway   JE., , Wills   AA., , Fang   Y., and Poss   KD. . tcf21+epicardial cells adopt non-myocardial fates during zebrafish heart developmentand regeneration. . Development . 2011; ;138: : 2895– 2902 .
    [Google Scholar]
  123. [123]. Smith   CL., , Baek   ST., , Sung   CY., and Tallquist   MD. . Epicardial-derived cell epithelial-to-mesenchymal transition and fate specificationrequire pdgf receptor signaling. . Circ Res . 2011; ;108: : e15– e26 .
    [Google Scholar]
  124. [124]. Drenckhahn   JD., , Schwarz   QP., , Gray   S., , Laskowski   A., , Kiriazis   H., , Ming   Z., , Harvey   RP., , Du   XJ., , Thorburn   DR., and Cox   TC. . Compensatory growth of healthy cardiac cells in the presence of diseased cellsrestores tissue homeostasis during heart development. . Dev Cell . 2008; ;15: : 521– 533 .
    [Google Scholar]
  125. [125]. Porrello   ER., , Mahmoud   AI., , Simpson   E., , Hill   JA., , Richardson   JA., , Olson   EN., and Sadek   HA. . Transient regenerative potential of the neonatal mouse heart. . Science . 2011; ;331: : 1078– 1080 .
    [Google Scholar]
  126. [126]. Witman   N., , Murtuza   B., , Davis   B., , Arner   A., and Morrison   JI. . Recapitulation of developmental cardiogenesis governs the morphological andfunctional regeneration of adult newt hearts following injury. . Dev Biol . 2011; ;354: : 67– 76 .
    [Google Scholar]
  127. [127]. Laube   F., , Heister   M., , Scholz   C., , Borchardt   T., and Braun   T. . Re-programming of newt cardiomyocytes is induced by tissue regeneration. . J CellSci . 2006; ;119: : 4719– 4729 .
    [Google Scholar]
  128. [128]. Poss   KD., , Wilson   LG., and Keating   MT. . Heart regeneration in zebrafish. . Science . 2002; ;298: : 2188– 2190 .
    [Google Scholar]
  129. [129]. Poss   KD. . Getting to the heart of regeneration in zebrafish. . Semin Cell Dev Biol . 2007; ;18: : 36– 45 .
    [Google Scholar]
  130. [130]. Lepilina   A., , Coon   AN., , Kikuchi   K., , Holdway   JE., , Roberts   RW., , Burns   CG., and Poss   KD. . A dynamic epicardial injury response supports progenitor cell activity duringzebrafish heart regeneration. . Cell . 2006; ;127: : 607– 619 .
    [Google Scholar]
  131. [131]. Schnabel   K., , Wu   CC., , Kurth   T., and Weidinger   G. . Regeneration of Cryoinjury induced necrotic heart lesions in zebrafish isassociated with epicardial activation and cardiomyocyte proliferation. . PLoS ONE . 2011; ;6: : e18503 .
    [Google Scholar]
  132. [132]. Gonzalez-Rosa   JM., , Martin   V., , Peralta   M., , Torres   M., and Mercader   N. . Extensive scar formation and regression during heart regeneration after cryoinjuryin zebrafish. . Development . 2011; ;138: : 1663– 1674 .
    [Google Scholar]
  133. [133]. Chablais   F., , Veit   J., , Rainer   G., and Jazwinska   A. . The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. . BMC Dev Biol . 2011; ;11: : 21 .
    [Google Scholar]
  134. [134]. Kikuchi   K., , Holdway   JE., , Werdich   AA., , Anderson   RM., , Fang   Y., , Egnaczyk   GF., , Evans   T., , Macrae   CA., , Stainier   DY., and Poss   KD. . Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. . Nature . 2010; ;464: : 601– 605 .
    [Google Scholar]
  135. [135]. Jopling   C., , Sleep   E., , Raya   M., , Marti   M., , Raya   A., and Belmonte   JC. . Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation andproliferation. . Nature . 2010; ;464: : 606– 609 .
    [Google Scholar]
  136. [136]. Kim   J., , Wu   Q., , Zhang   Y., , Wiens   KM., , Huang   Y., , Rubin   N., , Shimada   H., , Handin   RI., , Chao   MY., , Tuan   TL., , Starnes   VA., and Lien   CL. . PDGF signaling is required for epicardial function and blood vessel formation inregenerating zebrafish hearts. . Proc Natl Acad Sci USA . 2010; ;107: : 17206– 17210 .
    [Google Scholar]
  137. [137]. Mellgren   AM., , Smith   CL., , Olsen   GS., , Eskiocak   B., , Zhou   B., , Kazi   MN., , Ruiz   FR., , Pu   WT., and Tallquist   MD. . Platelet-derived growth factor receptor beta signaling is required for efficientepicardial cell migration and development of two distinct coronary vascular smoothmuscle cell populations. . Circ Res . 2008; ;103: : 1393– 1401 .
    [Google Scholar]
  138. [138]. Kikuchi   K., , Holdway   JE., , Major   RJ., , Blum   N., , Dahn   RD., , Begemann   G., and Poss   KD. . Retinoic Acid production by endocardium and epicardium is an injuryresponse essential for zebrafish heart regeneration. . Dev Cell . 2011; ;20: : 397– 404 .
    [Google Scholar]
  139. [139]. Wagner   KD., , Wagner   N., , Bondke   A., , Nafz   B., , Flemming   B., , Theres   H., and Scholz   H. . The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature aftermyocardial infarction. . FASEB J . 2002; ;16: : 1117– 1119 .
    [Google Scholar]
  140. [140]. Wagner   KD., , Wagner   N., , Wellmann   S., , Schley   G., , Bondke   A., , Theres   H., and Scholz   H. . Oxygen-regulated expression of the Wilms’ tumor suppressor Wt1 involveshypoxia-inducible factor-1 (HIF-1). . FASEB J . 2003; ;17: : 1364– 1366 .
    [Google Scholar]
  141. [141]. Zhou   B., , Honor   LB., , He   H., , Ma   Q., , Oh   JH., , Butterfield   C., , Lin   RZ., , Melero-Martin   JM., , Dolmatova   E., , Duffy   HS., , Gise   AV., , Zhou   P., , Hu   YW., , Wang   G., , Zhang   B., , Wang   L., , Hall   JL., , Moses   MA., , McGowan   FX., and Pu   WT. . Adult mouse epicardium modulates myocardial injury by secreting paracrinefactors. . J Clin Invest . 2011; ;121: : 1894– 904 .
    [Google Scholar]
  142. [142]. Russell   JL., , Goetsch   SC., , Gaiano   NR., , Hill   JA., , Olson   EN., and Schneider   JW. . A dynamic notch injury response activates epicardium and contributes to fibrosisrepair. . Circ Res . 2011; ;108: : 51– 59 .
    [Google Scholar]
  143. [143]. Limana   F., , Zacheo   A., , Mocini   D., , Mangoni   A., , Borsellino   G., , Diamantini   A., , De Mori   R., , Battistini   L., , Vigna   E., , Santini   M., , Loiaconi   V., , Pompilio   G., , Germani   A., and Capogrossi   MC. . Identification of myocardial and vascular precursor cells in human and mouseepicardium. . Circ Res . 2007; ;101: : 1255– 1265 .
    [Google Scholar]
  144. [144]. Limana   F., , Capogrossi   MC., and Germani   A. . The epicardium in cardiac repair: from the stem cell view. . Pharmacol Ther . 2011; ;129: : 82– 96 .
    [Google Scholar]
  145. [145]. Lien   CL., , Schebesta   M., , Makino   S., , Weber   GJ., and Keating   MT. . Gene expression analysis of zebrafish heart regeneration. . PLoS Biology . 2006; ;4: : e260 .
    [Google Scholar]
  146. [146]. Smart   N., , Risebro   CA., , Melville   AA., , Moses   K., , Schwartz   RJ., , Chien   KR., and Riley   PR. . Thymosin beta4 induces adult epicardial progenitor mobilization andneovascularization. . Nature . 2007; ;445: : 177– 182 .
    [Google Scholar]
  147. [147]. Bock-Marquette   I., , Shrivastava   S., , Pipes   GC., , Thatcher   JE., , Blystone   A., , Shelton   JM., , Galindo   CL., , Melegh   B., , Srivastava   D., , Olson   EN., and DiMaio   JM. . Thymosin beta4 mediated PKC activation is essential to initiate the embryoniccoronary developmental program and epicardial progenitor cell activation in adultmice in vivo. . J Mol Cell Cardiol . 2009; ;46: : 728– 738 .
    [Google Scholar]
  148. [148]. Bock-Marquette   I., , Saxena   A., , White   MD., , Michael Dimaio   J., and Srivastava   D. . Thymosin beta4 activates integrin-linked kinase and promotes cardiac cellmigration, survival and cardiac repair. . Nature . 2004; ;432: : 466– 472 .
    [Google Scholar]
  149. [149]. Smart   N., , Bollini   S., , Dube   KN., , Vieira   JM., , Zhou   B., , Davidson   S., , Yellon   D., , Riegler   J., , Price   AN., , Lythgoe   MF., , Pu   WT., and Riley   PR. . De novo cardiomyocytes from within the activated adult heart after injury. . Nature . 2011; ;474: : 640– 644 .
    [Google Scholar]
  150. [150]. Weeke-Klimp   A., , Bax   NA., , Bellu   AR., , Winter   EM., , Vrolijk   J., , Plantinga   J., , Maas   S., , Brinker   M., , Mahtab   EA., , Gittenberger-de Groot   AC., , van Luyn   MJ., , Harmsen   MC., and Lie-Venema   H. . Epicardium-derived cells enhance proliferation, cellular maturation and alignment ofcardiomyocytes. . J Mol Cell Cardiol . 2010; ;49: : 606– 616 .
    [Google Scholar]
  151. [151]. Eid   H., , Larson   DM., , Springhorn   JP., , Attawia   MA., , Nayak   RC., , Smith   TW., and Kelly   RA. . Role of epicardial mesothelial cells in the modification of phenotype and function ofadult rat ventricular myocytes in primary coculture. . Circ Res . 1992; ;71: : 40– 50 .
    [Google Scholar]
  152. [152]. Eid   H., , de Bold   ML., , Chen   JH., and de Bold   AJ. . Epicardial mesothelial cells synthesize and release endothelin. . J CardiovascPharmacol . 1994; ;24: : 715– 720 .
    [Google Scholar]
  153. [153]. Bani   D., , Formigli   L., , Gherghiceanu   M., and Faussone-Pellegrini   MS. . Telocytes as supporting cells for myocardial tissue organization in developing andadult heart. . J Cell Mol Med . 2010; ;14: : 2531– 2538 .
    [Google Scholar]
  154. [154]. Popescu   LM., , Manole   CG., , Gherghiceanu   M., , Ardelean   A., , Nicolescu   MI., , Hinescu   ME., and Kostin   S. . Telocytes in human epicardium. . J Cell Mol Med . 2010; ;14: : 2085– 2093 .
    [Google Scholar]
  155. [155]. Olivotto   I., , Cecchi   F., , Poggesi   C., and Yacoub   MH. . Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifyinghypothesis. . Nat Rev Cardiol . 2009; ;6: : 317– 321 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.11
Loading
/content/journals/10.5339/ahcsps.2011.11
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error