1887
Volume 2011, Issue 2
  • ISSN: 2220-2730
  •  E-ISSN:  Will be obtained soon

Abstract

Abstract

The embryonic heart initially consists of only two cell layers, the endocardium and the myocardium. The epicardium, which forms an epithelial layer on the surface of the heart, is derived from a cluster of mesothelial cells developing at the base of the venous inflow tract of the early embryonic heart. This cell cluster is termed the proepicardium and gives rise not only to the epicardium but also to epicardium-derived cells. These cells populate the myocardial wall and differentiate into smooth muscle cells and fibroblasts, while the contribution to the vascular endothelial lineage is uncertain. In this review we will discuss the signaling molecules involved in recruiting mesodermal cells to undergo proepicardium formation and guide these cells to the myocardial surface. Marker genes which are suitable to follow these cells during proepicardium formation and cell migration will be introduced. We will address whether the proepicardium consists of a homogenous cell population or whether different cell lineages are present. Finally the role of the epicardium as a source for cardiac stem cells and its importance in cardiac regeneration, in particular in the zebrafish and mouse model systems is discussed.

Loading

Article metrics loading...

/content/journals/10.5339/ahcsps.2011.11
2011-12-29
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ahcsps/2011/2/ahcsps.2011.11.html?itemId=/content/journals/10.5339/ahcsps.2011.11&mimeType=html&fmt=ahah

References

  1. Männer  J. The development of pericardial villi in the chick embryo. Anat Embryol. 1992; 186::379385.
    [Google Scholar]
  2. Männer  J. Experimental study on the formation of the epicardium in chick embryos. Anat Embryol. 1993; 187::281289.
    [Google Scholar]
  3. Rossi  JM, Dunn  NR, Hogan  BL and Zaret  KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001; 15::19982009.
    [Google Scholar]
  4. Ishii  Y, Langberg  JD, Hurtado  R, Lee  S and Mikawa  T. Induction of proepicardial marker gene expression by the liver bud. Development. 2007; 134::36273637.
    [Google Scholar]
  5. Schulte  I, Schlueter  J, Abu-Issa  R, Brand  T and Manner  J. Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn. 2007; 236::684695.
    [Google Scholar]
  6. Nahirney  PC, Mikawa  T and Fischman  DA. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn. 2003; 227::511523.
    [Google Scholar]
  7. Olivey  HE and Svensson  EC. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010; 106::818832.
    [Google Scholar]
  8. Lavine  KJ and Ornitz  DM. Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ Res. 2009; 104::159169.
    [Google Scholar]
  9. Männer  J, Perez-Pomares  JM, Macias  D and Munoz-Chapuli  R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001; 169::89103.
    [Google Scholar]
  10. Mikawa  T and Brand  T. Epicardial Lineage: Origins and Fates. Harvey RP. and Rosenthal N.  (eds), Heart Development and Regeneration. Vol. 1:Academic Press. 2010. 325345.
    [Google Scholar]
  11. Ho  E and Shimada  Y. Formation of the epicardium studied with the scanning electron microscope. Dev Biol. 1978; 66::579585.
    [Google Scholar]
  12. Schlueter  J, Manner  J and Brand  T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol. 2006; 295::546558.
    [Google Scholar]
  13. Torlopp  A, Schlueter  J and Brand  T. Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev Dyn. 2010; 239::23932403.
    [Google Scholar]
  14. Schlueter  J and Brand  T. A right-sided pathway involving FGF8/Snai1 controls asymmetric development of the proepicardium in the chick embryo. Proc Natl Acad Sci USA. 2009; 106::74857490.
    [Google Scholar]
  15. Isaac  A, Sargent  MG and Cooke  J. Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science. 1997; 275::13011304.
    [Google Scholar]
  16. Patel  K, Isaac  A and Cooke  J. Nodal signalling and the roles of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Curr Biol. 1999; 9::609612.
    [Google Scholar]
  17. Perez-Pomares  JM, Phelps  A, Sedmerova  M and Wessels  A. Epicardial-like cells on the distal arterial end of the cardiac outflow tract do not derive from the proepicardium but are derivatives of the cephalic pericardium. Dev Dyn. 2003; 227::5668.
    [Google Scholar]
  18. Mikawa  T and Gourdie  RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996; 174::221232.
    [Google Scholar]
  19. Dettman  RW, Denetclaw  W  Jr, Ordahl  CP and Bristow  J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998; 193::169181.
    [Google Scholar]
  20. Männer  J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? a quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec. 1999; 255::212226.
    [Google Scholar]
  21. Perez-Pomares  JM, Carmona  R, Gonzalez-Iriarte  M, Atencia  G, Wessels  A and Munoz-Chapuli  R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002; 46::10051013.
    [Google Scholar]
  22. Poelmann  RE, Gittenberger-de Groot  AC, Mentink  MM, Bokenkamp  R and Hogers  B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chick-quail chimeras. Circ Res. 1993; 73::559568.
    [Google Scholar]
  23. Rodgers  LS, Lalani  S, Runyan  RB and Camenisch  TD. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn. 2008; 237::145152.
    [Google Scholar]
  24. Komiyama  M, Ito  K and Shimada  Y. Origin and development of the epicardium in the mouse embryo. Anat Embryol. 1987; 176::183189.
    [Google Scholar]
  25. Van den Eijnde  SM, Wenink  AC and Vermeij-Keers  C. Origin of subepicardial cells in rat embryos. Anat Rec. 1995; 242::96102.
    [Google Scholar]
  26. Perez-Pomares  JM, Macias  D, Garcia-Garrido  L and Munoz-Chapuli  R. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997; 210::96105.
    [Google Scholar]
  27. Sengbusch  JK, He  W, Pinco  KA and Yang  JT. Dual functions of [alpha]4[beta]1 integrin in epicardial development: initial migration and long-term attachment. J Cell Biol. 2002; 157::873882.
    [Google Scholar]
  28. Hirose  T, Karasawa  M, Sugitani  Y, Fujisawa  M, Akimoto  K, Ohno  S and Noda  T. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006; 133::13891398.
    [Google Scholar]
  29. Nesbitt  T, Lemley  A, Davis  J, Yost  MJ, Goodwin  RL and Potts  JD. Epicardial development in the rat: a new perspective. Microsc Microanal. 2006; 12::390398.
    [Google Scholar]
  30. Schlueter  J and Brand  T. Left-right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenet Genome Res. 2007; 117::256267.
    [Google Scholar]
  31. Meyers  EN and Martin  GR. Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science. 1999; 285::403406.
    [Google Scholar]
  32. Tanaka  Y, Okada  Y and Hirokawa  N. FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature. 2005; 435::172177.
    [Google Scholar]
  33. Jahr  M, Schlueter  J, Brand  T and Manner  J. Development of the proepicardium in Xenopus laevis. Dev Dyn. 2008; 237::30883096.
    [Google Scholar]
  34. Fransen  ME and Lemanski  LF. Epicardial development in the axolotl, Ambystoma mexicanum. Anat Rec. 1990; 226::228236.
    [Google Scholar]
  35. Liu  J and Stainier  DY. Tbx5 and Bmp signaling are essential for proepicardium specification in zebrafish. Circ Res. 2010; 106::18181828.
    [Google Scholar]
  36. Serluca  FC. Development of the proepicardial organ in the zebrafish. Dev Biol. 2008; 315::1827.
    [Google Scholar]
  37. Icardo  JM, Guerrero  A, Duran  AC, Colvee  E, Domezain  A and Sans-Coma  V. The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec. 2009; 292::15931601.
    [Google Scholar]
  38. Pombal  MA, Carmona  R, Megias  M, Ruiz  A, Perez-Pomares  JM and Munoz-Chapuli  R. Epicardial development in lamprey supports an evolutionary origin of the vertebrate epicardium from an ancestral pronephric external glomerulus. Evol Dev. 2008; 10::210216.
    [Google Scholar]
  39. Viragh  S and Challice  CE. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec. 1981; 201::157168.
    [Google Scholar]
  40. Viragh  S, Gittenberger-de Groot  AC, Poelmann  RE and Kalman  F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol. 1993; 188::381393.
    [Google Scholar]
  41. Greulich  F, Rudat  C and Kispert  A. Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 2011; 91::212222.
    [Google Scholar]
  42. Haenig  B and Kispert  A. Analysis of TBX18 expression in chick embryos. Dev Genes Evol. 2004; 214::407411.
    [Google Scholar]
  43. Kraus  F, Haenig  B and Kispert  A. Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev. 2001; 100::8386.
    [Google Scholar]
  44. Moore  AW, McInnes  L, Kreidberg  J, Hastie  ND and Schedl  A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999; 126::18451857.
    [Google Scholar]
  45. von Gise A, Zhou B, Honor LB, Ma Q, Petryk A and Pu WT. WT1 regulates epicardial epithelial to mesenchymal transition through beta-catenin and retinoic acid signaling pathways. Dev Biol. 2011 [in press].
  46. Martinez-Estrada  OM, Lettice  LA, Essafi  A, Guadix  JA, Slight  J, Velecela  E, V  J, Hall  PS, Reichmann  P, Devenney  N, Hohenstein  RE, Hosen  R, Hill  ND, Munoz-Chapuli   and Hastie  . Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin. Nature Genet. 2010; 42::8993.
    [Google Scholar]
  47. Guadix  JA, Ruiz-Villalba  A, Lettice  L, Velecela  V, Munoz-Chapuli  R, Hastie  ND, Perez-Pomares  JM and Martinez-Estrada  OM. Wt1 controls retinoic acid signalling in embryonic epicardium through transcriptional activation of Raldh2. Development. 2011; 138::10931097.
    [Google Scholar]
  48. Carmona  R, Gonzalez-Iriarte  M, Perez-Pomares  JM and Munoz-Chapuli  R. Localization of the Wilm’s tumour protein WT1 in avian embryos. Cell Tissue Res. 2001; 303::173186.
    [Google Scholar]
  49. Perez-Pomares  JM, Phelps  A, Sedmerova  M, Carmona  R, Gonzalez-Iriarte  M, Munoz-Chapuli  R and Wessels  A. Experimental studies on the spatiotemporal expression of WT1 and RALDH2 in the embryonic avian heart: a model for the regulation of myocardial and valvuloseptal development by epicardially derived cells (EPDCs). Dev Biol. 2002; 247::307326.
    [Google Scholar]
  50. Robb  L, Mifsud  L, Hartley  L, Biben  C, Copeland  NG, Gilbert  DJ, Jenkins  NA and Harvey  RP. epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn. 1998; 213::105113.
    [Google Scholar]
  51. Funato  N, Ohyama  K, Kuroda  T and Nakamura  M. Basic helix-loop-helix transcription factor epicardin/capsulin/Pod-1 suppresses differentiation by negative regulation of transcription. J Biol Chem. 2003; 278::74867493.
    [Google Scholar]
  52. Quaggin  SE, Vanden Heuvel  GB and Igarashi  P. Pod-1, a mesoderm-specific basic-helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev. 1998; 71::3748.
    [Google Scholar]
  53. Lu  JR, Bassel-Duby  R, Hawkins  A, Chang  P, Valdez  R, Wu  H, Gan  L, Shelton  JM, Richardson  JA and Olson  EN. Control of facial muscle development by MyoR and capsulin. Science. 2002; 298::23782381.
    [Google Scholar]
  54. Lu  J, Chang  P, Richardson  JA, Gan  L, Weiler  H and Olson  EN. The basic helix-loop-helix transcription factor capsulin controls spleen organogenesis. Proc Natl Acad Sci USA. 2000; 97::95259530.
    [Google Scholar]
  55. Lu  J, Richardson  JA and Olson  EN. Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev. 1998; 73::2332.
    [Google Scholar]
  56. Shen MM. Nodal signaling: developmental roles and regulation. 2007; 134: 1023-1034.
  57. Schlange  T, Schnipkoweit  I, Andree  B, Ebert  A, Zile  MH, Arnold  HH and Brand  T. Chick CFC controls Lefty1 expression in the embryonic midline and nodal expression in the lateral plate. Dev Biol. 2001; 234::376389.
    [Google Scholar]
  58. Gray  PC, Shani  G, Aung  K, Kelber  J and Vale  W. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol Cell Biol. 2006; 26::92689278.
    [Google Scholar]
  59. Gray  PC, Harrison  CA and Vale  W. Cripto forms a complex with activin and type II activin receptors and can block activin signaling. Proc Natl Acad Sci USA. 2003; 100::51935198.
    [Google Scholar]
  60. Adamson  ED, Minchiotti  G and Salomon  DS. Cripto: a tumor growth factor and more. J Cell Physiol. 2002; 190::267278.
    [Google Scholar]
  61. Strizzi  L, Bianco  C, Normanno  N, Seno  M, Wechselberger  C, Wallace-Jones  B, Khan  NI, Hirota  M, Sun  Y, Sanicola  M and Salomon  DS. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J Cell Physiol. 2004; 201::266276.
    [Google Scholar]
  62. Tao  Q, Yokota  C, Puck  H, Kofron  M, Birsoy  B, Yan  D, Asashima  M, Wylie  CC, Lin  X and Heasman  J. Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos. Cell. 2005; 120::857871.
    [Google Scholar]
  63. Kostetskii  I, Jiang  Y, Kostetskaia  E, Yuan  S, Evans  T and Zile  M. Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation. Dev Biol. 1999; 206::206218.
    [Google Scholar]
  64. Ghatpande  S, Ghatpande  A, Zile  M and Evans  T. Anterior endoderm is sufficient to rescue foregut apoptosis and heart tube morphogenesis in an embryo lacking retinoic acid. Dev Biol. 2000; 219::5970.
    [Google Scholar]
  65. Ghatpande  S, Brand  T, Zile  M and Evans  T. Bmp2 and Gata4 function additively to rescue heart tube development in the absence of retinoids. Dev Dyn. 2006; 235::20302039.
    [Google Scholar]
  66. Xavier-Neto  J, Shapiro  MD, Houghton  L and Rosenthal  N. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol. 2000; 219::129141.
    [Google Scholar]
  67. Jenkins  SJ, Hutson  DR and Kubalak  SW. Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/-epicardium. Dev Dyn. 2005; 233::10911101.
    [Google Scholar]
  68. Azambuja  AP, Portillo-Sanchez  V, Rodrigues  MV, Omae  SV, Schechtman  D, Strauss  BE, Costanzi-Strauss  E, Krieger  JE, Perez-Pomares  JM and Xavier-Neto  J. Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis. Circ Res. 2010; 107::204216.
    [Google Scholar]
  69. Bochmann  L, Sarathchandra  P, Mori  F, Lara-Pezzi  E, Lazzaro  D and Rosenthal  N. Revealing new mouse epicardial cell markers through transcriptomics. PLoS One. 2010; 5::e11429.
    [Google Scholar]
  70. Harvey  RP, Meilhac  SM and Buckingham  ME. Landmarks and lineages in the developing heart. Circ Res. 2009; 104::12351237.
    [Google Scholar]
  71. Buckingham  M, Meilhac  S and Zaffran  S. Building the mammalian heart from two sources of myocardial cells. Nat Rev Genet. 2005; 6::826835.
    [Google Scholar]
  72. Dyer  LA and Kirby  ML. The role of secondary heart field in cardiac development. Dev Biol. 2009; 336::137144.
    [Google Scholar]
  73. van Wijk  B, van den Berg  G, Abu-Issa  R, Barnett  P, van der Velden  S, Schmidt  M, Ruijter  JM, Kirby  ML, Moorman  AF and van den Hoff  MJ. Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res. 2009; 105::431441.
    [Google Scholar]
  74. Kruithof  BP, van Wijk  B, Somi  S, Kruithof-de Julio  M, Perez Pomares  JM, Weesie  F, Wessels  A, Moorman  AF and van den Hoff  MJ. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006; 295::507522.
    [Google Scholar]
  75. Saga  Y, Kitajima  S and Miyagawa-Tomita  S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med. 2000; 10::345352.
    [Google Scholar]
  76. Stanley  EG, Biben  C, Elefanty  A, Barnett  L, Koentgen  F, Robb  L and Harvey  RP. Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3’UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int J Dev Biol. 2002; 46::431439.
    [Google Scholar]
  77. Cai  CL, Liang  X, Shi  Y, Chu  PH, Pfaff  SL, Chen  J and Evans  S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell. 2003; 5::877889.
    [Google Scholar]
  78. Zhou  B, von Gise  A, Ma  Q, Rivera-Feliciano  J and Pu  WT. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Bioph Res Co. 2008; 375::450453.
    [Google Scholar]
  79. Ma  Q, Zhou  B and Pu  WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol. 2008; 323::98104.
    [Google Scholar]
  80. Barnes  RM, Firulli  BA, Conway  SJ, Vincentz  JW and Firulli  AB. Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives. Dev Dyn. 2010; 239::30863097.
    [Google Scholar]
  81. Watt  AJ, Battle  MA, Li  J and Duncan  SA. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 2004; 101::1257312578.
    [Google Scholar]
  82. Barnes  RM, Firulli  BA, VanDusen  NJ, Morikawa  Y, Conway  SJ, Cserjesi  P, Vincentz  JW and Firulli  AB. Hand2 loss-of-function in Hand1-expressing cells reveals distinct roles in epicardial and coronary vessel development. Circ Res. 2011; 108::940949.
    [Google Scholar]
  83. Del Monte  G, Casanova  JC, Guadix  JA, Macgrogan  D, Burch  JB, Perez-Pomares  JM and de la Pompa  JL. Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011; 108::824836.
    [Google Scholar]
  84. Rojas  A, De Val  S, Heidt  AB, Xu  SM, Bristow  J and Black  BL. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development. 2005; 132::34053417.
    [Google Scholar]
  85. Del Monte  G, Casanova  JC, Guadix  JA, Macgrogan  D, Burch  JB, Perez-Pomares  JM and de la Pompa  JL. Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;
    [Google Scholar]
  86. Grieskamp  T, Rudat  C, Ludtke  TH, Norden  J and Kispert  A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011; 108::813823.
    [Google Scholar]
  87. Urness LD, Bleyl SB, Wright TJ, Moon AM and Mansour SL. Redundant and dosage sensitive requirements for Fgf3 and Fgf10 in cardiovascular development. Dev Biol. 2011 [in press].
  88. Buermans  HP, van Wijk  B, Hulsker  MA, Smit  NC, den Dunnen  JT, van Ommen  GB, Moorman  AF, van den Hoff  MJ and t Hoen  PA. Comprehensive gene-expression survey identifies wif1 as a modulator of cardiomyocyte differentiation. PLoS One. 2010; 5::e15504.
    [Google Scholar]
  89. Phillips  MD, Mukhopadhyay  M, Poscablo  C and Westphal  H. Dkk1 and Dkk2 regulate epicardial specification during mouse heart development. Int J Cardiol. 2011; 150::186192.
    [Google Scholar]
  90. Merki  E, Zamora  M, Raya  A, Kawakami  Y, Wang  J, Zhang  X, Burch  J, Kubalak  SW, Kaliman  P, Belmonte  JC, Chien  KR and Ruiz-Lozano  P. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA. 2005; 102::1845518460.
    [Google Scholar]
  91. Zamora  M, Manner  J and Ruiz-Lozano  P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci USA. 2007; 104::1810918114.
    [Google Scholar]
  92. Ishii  Y, Garriock  RJ, Navetta  AM, Coughlin  LE and Mikawa  T. BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell. 2010; 19::307316.
    [Google Scholar]
  93. Hatcher  CJ, Diman  NY, Kim  MS, Pennisi  D, Song  Y, Goldstein  MM, Mikawa  T and Basson  CT. A role for Tbx5 in proepicardial cell migration during cardiogenesis. Physiol Genomics. 2004; 18::129140.
    [Google Scholar]
  94. Yang  JT, Rayburn  H and Hynes  RO. Cell adhesion events mediated by alpha 4 integrins are essential in placental and cardiac development. Development. 1995; 121::549560.
    [Google Scholar]
  95. Kwee  L, Baldwin  HS, Shen  HM, Stewart  CL, Buck  C, Buck  CA and Labow  MA. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 1995; 121::489503.
    [Google Scholar]
  96. Wu  M, Smith  CL, Hall  JA, Lee  I, Luby-Phelps  K and Tallquist  MD. Epicardial spindle orientation controls cell entry into the myocardium. Dev Cell. 2010; 19::114125.
    [Google Scholar]
  97. Hiruma  T and Hirakow  R. Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat. 1989; 184::129138.
    [Google Scholar]
  98. Shimada  Y, Ho  E and Toyota  N. Epicardial covering over myocardial wall in the chicken embryo as seen with the scanning electron microscope. Scan Electron Microsc. 1981;275280.
    [Google Scholar]
  99. Pennisi  DJ, Ballard  VL and Mikawa  T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn. 2003; 228::161172.
    [Google Scholar]
  100. Lavine  KJ, Yu  K, White  AC, Zhang  X, Smith  C, Partanen  J and Ornitz  DM. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005; 8::8595.
    [Google Scholar]
  101. Lavine  KJ, White  AC, Park  C, Smith  CS, Choi  K, Long  F, Hui  CC and Ornitz  DM. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006; 20::16511666.
    [Google Scholar]
  102. Kreidberg  JA, Sariola  H, Loring  JM, Maeda  M, Pelletier  J, Housman  D and Jaenisch  R. WT-1 is required for early kidney development. Cell. 1993; 74::679691.
    [Google Scholar]
  103. Sucov  HM, Dyson  E, Gumeringer  CL, Price  J, Chien  KR and Evans  RM. RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 1994; 8::10071018.
    [Google Scholar]
  104. Kastner  P, Grondona  JM, Mark  M, Gansmuller  A, LeMeur  M, Decimo  D, Vonesch  JL, Dolle  P and Chambon  P. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell. 1994; 78::9871003.
    [Google Scholar]
  105. Gittenberger-de Groot  AC, Vrancken Peeters  MP, Bergwerff  M, Mentink  MM and Poelmann  RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res. 2000; 87::969971.
    [Google Scholar]
  106. Manner  J, Schlueter  J and Brand  T. Experimental analyses of the function of the proepicardium using a new microsurgical procedure to induce loss-of-proepicardial-function in chick embryos. Dev Dyn. 2005; 233::14541463.
    [Google Scholar]
  107. Wu  H, Lee  S, Gao  J, X  L and Iruela-Arispe  M. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999; 126::35973605.
    [Google Scholar]
  108. Stuckmann  I, Evans  S and Lassar  AB. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol. 2003; 255::334349.
    [Google Scholar]
  109. Brade  T, Kumar  S, Cunningham  TJ, Chatzi  C, Zhao  X, Cavallero  S, Li  P, Sucov  HM, Ruiz-Lozano  P and Duester  G. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development. 2011; 138::139148.
    [Google Scholar]
  110. Li  P, Cavallero  S, Gu  Y, Chen  TH, Hughes  J, Hassan  AB, Bruning  JC, Pashmforoush  M and Sucov  HM. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011; 138::17951805.
    [Google Scholar]
  111. Mima  T, Ueno  H, Fischman  DA, Williams  LT and Mikawa  T. Fibroblast growth factor receptor is required for in vivo cardiac myocyte proliferation at early embryonic stages of heart development. Proc Natl Acad Sci USA. 1995; 92::467471.
    [Google Scholar]
  112. Mikawa  T. Retroviral targeting of FGF and FGFR in cardiomyocytes and coronary vascular cells during heart development. Ann N Y Acad Sci. 1995; 752::506516.
    [Google Scholar]
  113. Chen  TH, Chang  TC, Kang  JO, Choudhary  B, Makita  T, Tran  CM, Burch  JB, Eid  H and Sucov  HM. Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol. 2002; 250::198207.
    [Google Scholar]
  114. Mikawa  T and Fischman  DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA. 1992; 89::95049508.
    [Google Scholar]
  115. Vrancken Peeters  MP, Gittenberger-de Groot  AC, Mentink  MM and Poelmann  RE. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol. 1999; 199::367378.
    [Google Scholar]
  116. Red-Horse  K, Ueno  H, Weissman  IL and Krasnow  MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010; 464::549553.
    [Google Scholar]
  117. Grieskamp  T, Rudat  C, Ludtke  TH, Norden  J and Kispert  A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011; 108::813823.
    [Google Scholar]
  118. Cai  CL, Martin  JC, Sun  Y, Cui  L, Wang  L, Ouyang  K, Yang  L, Bu  L, Liang  X, Zhang  X, Stallcup  WB, Denton  CP, McCulloch  A, Chen  J and Evans  SM. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008; 454::104108.
    [Google Scholar]
  119. Zhou  B, Ma  Q, Rajagopal  S, Wu  SM, Domian  I, Rivera-Feliciano  J, Jiang  D, von Gise  A, Ikeda  S, Chien  KR and Pu  WT. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008; 454::109113.
    [Google Scholar]
  120. Guadix  JA, Carmona  R, Munoz-Chapuli  R and Perez-Pomares  JM. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev Dyn. 2006; 235::10141026.
    [Google Scholar]
  121. Christoffels  VM, Grieskamp  T, Norden  J, Mommersteeg  MT, Rudat  C and Kispert  A. Tbx18 and the fate of epicardial progenitors. Nature. 2009; 458::E8E9. discussion E9–10 .
    [Google Scholar]
  122. Kikuchi  K, Gupta  V, Wang  J, Holdway  JE, Wills  AA, Fang  Y and Poss  KD. tcf21+epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development. 2011; 138::28952902.
    [Google Scholar]
  123. Smith  CL, Baek  ST, Sung  CY and Tallquist  MD. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require pdgf receptor signaling. Circ Res. 2011; 108::e15e26.
    [Google Scholar]
  124. Drenckhahn  JD, Schwarz  QP, Gray  S, Laskowski  A, Kiriazis  H, Ming  Z, Harvey  RP, Du  XJ, Thorburn  DR and Cox  TC. Compensatory growth of healthy cardiac cells in the presence of diseased cells restores tissue homeostasis during heart development. Dev Cell. 2008; 15::521533.
    [Google Scholar]
  125. Porrello  ER, Mahmoud  AI, Simpson  E, Hill  JA, Richardson  JA, Olson  EN and Sadek  HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011; 331::10781080.
    [Google Scholar]
  126. Witman  N, Murtuza  B, Davis  B, Arner  A and Morrison  JI. Recapitulation of developmental cardiogenesis governs the morphological and functional regeneration of adult newt hearts following injury. Dev Biol. 2011; 354::6776.
    [Google Scholar]
  127. Laube  F, Heister  M, Scholz  C, Borchardt  T and Braun  T. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J Cell Sci. 2006; 119::47194729.
    [Google Scholar]
  128. Poss  KD, Wilson  LG and Keating  MT. Heart regeneration in zebrafish. Science. 2002; 298::21882190.
    [Google Scholar]
  129. Poss  KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol. 2007; 18::3645.
    [Google Scholar]
  130. Lepilina  A, Coon  AN, Kikuchi  K, Holdway  JE, Roberts  RW, Burns  CG and Poss  KD. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell. 2006; 127::607619.
    [Google Scholar]
  131. Schnabel  K, Wu  CC, Kurth  T and Weidinger  G. Regeneration of Cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation. PLoS ONE. 2011; 6::e18503.
    [Google Scholar]
  132. Gonzalez-Rosa  JM, Martin  V, Peralta  M, Torres  M and Mercader  N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development. 2011; 138::16631674.
    [Google Scholar]
  133. Chablais  F, Veit  J, Rainer  G and Jazwinska  A. The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol. 2011; 11::21.
    [Google Scholar]
  134. Kikuchi  K, Holdway  JE, Werdich  AA, Anderson  RM, Fang  Y, Egnaczyk  GF, Evans  T, Macrae  CA, Stainier  DY and Poss  KD. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 2010; 464::601605.
    [Google Scholar]
  135. Jopling  C, Sleep  E, Raya  M, Marti  M, Raya  A and Belmonte  JC. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 2010; 464::606609.
    [Google Scholar]
  136. Kim  J, Wu  Q, Zhang  Y, Wiens  KM, Huang  Y, Rubin  N, Shimada  H, Handin  RI, Chao  MY, Tuan  TL, Starnes  VA and Lien  CL. PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts. Proc Natl Acad Sci USA. 2010; 107::1720617210.
    [Google Scholar]
  137. Mellgren  AM, Smith  CL, Olsen  GS, Eskiocak  B, Zhou  B, Kazi  MN, Ruiz  FR, Pu  WT and Tallquist  MD. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008; 103::13931401.
    [Google Scholar]
  138. Kikuchi  K, Holdway  JE, Major  RJ, Blum  N, Dahn  RD, Begemann  G and Poss  KD. Retinoic Acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration. Dev Cell. 2011; 20::397404.
    [Google Scholar]
  139. Wagner  KD, Wagner  N, Bondke  A, Nafz  B, Flemming  B, Theres  H and Scholz  H. The Wilms’ tumor suppressor Wt1 is expressed in the coronary vasculature after myocardial infarction. FASEB J. 2002; 16::11171119.
    [Google Scholar]
  140. Wagner  KD, Wagner  N, Wellmann  S, Schley  G, Bondke  A, Theres  H and Scholz  H. Oxygen-regulated expression of the Wilms’ tumor suppressor Wt1 involves hypoxia-inducible factor-1 (HIF-1). FASEB J. 2003; 17::13641366.
    [Google Scholar]
  141. Zhou  B, Honor  LB, He  H, Ma  Q, Oh  JH, Butterfield  C, Lin  RZ, Melero-Martin  JM, Dolmatova  E, Duffy  HS, Gise  AV, Zhou  P, Hu  YW, Wang  G, Zhang  B, Wang  L, Hall  JL, Moses  MA, McGowan  FX and Pu  WT. Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest. 2011; 121::1894904.
    [Google Scholar]
  142. Russell  JL, Goetsch  SC, Gaiano  NR, Hill  JA, Olson  EN and Schneider  JW. A dynamic notch injury response activates epicardium and contributes to fibrosis repair. Circ Res. 2011; 108::5159.
    [Google Scholar]
  143. Limana  F, Zacheo  A, Mocini  D, Mangoni  A, Borsellino  G, Diamantini  A, De Mori  R, Battistini  L, Vigna  E, Santini  M, Loiaconi  V, Pompilio  G, Germani  A and Capogrossi  MC. Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res. 2007; 101::12551265.
    [Google Scholar]
  144. Limana  F, Capogrossi  MC and Germani  A. The epicardium in cardiac repair: from the stem cell view. Pharmacol Ther. 2011; 129::8296.
    [Google Scholar]
  145. Lien  CL, Schebesta  M, Makino  S, Weber  GJ and Keating  MT. Gene expression analysis of zebrafish heart regeneration. PLoS Biology. 2006; 4::e260.
    [Google Scholar]
  146. Smart  N, Risebro  CA, Melville  AA, Moses  K, Schwartz  RJ, Chien  KR and Riley  PR. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007; 445::177182.
    [Google Scholar]
  147. Bock-Marquette  I, Shrivastava  S, Pipes  GC, Thatcher  JE, Blystone  A, Shelton  JM, Galindo  CL, Melegh  B, Srivastava  D, Olson  EN and DiMaio  JM. Thymosin beta4 mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J Mol Cell Cardiol. 2009; 46::728738.
    [Google Scholar]
  148. Bock-Marquette  I, Saxena  A, White  MD, Michael Dimaio  J and Srivastava  D. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature. 2004; 432::466472.
    [Google Scholar]
  149. Smart  N, Bollini  S, Dube  KN, Vieira  JM, Zhou  B, Davidson  S, Yellon  D, Riegler  J, Price  AN, Lythgoe  MF, Pu  WT and Riley  PR. De novo cardiomyocytes from within the activated adult heart after injury. Nature. 2011; 474::640644.
    [Google Scholar]
  150. Weeke-Klimp  A, Bax  NA, Bellu  AR, Winter  EM, Vrolijk  J, Plantinga  J, Maas  S, Brinker  M, Mahtab  EA, Gittenberger-de Groot  AC, van Luyn  MJ, Harmsen  MC and Lie-Venema  H. Epicardium-derived cells enhance proliferation, cellular maturation and alignment of cardiomyocytes. J Mol Cell Cardiol. 2010; 49::606616.
    [Google Scholar]
  151. Eid  H, Larson  DM, Springhorn  JP, Attawia  MA, Nayak  RC, Smith  TW and Kelly  RA. Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res. 1992; 71::4050.
    [Google Scholar]
  152. Eid  H, de Bold  ML, Chen  JH and de Bold  AJ. Epicardial mesothelial cells synthesize and release endothelin. J Cardiovasc Pharmacol. 1994; 24::715720.
    [Google Scholar]
  153. Bani  D, Formigli  L, Gherghiceanu  M and Faussone-Pellegrini  MS. Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med. 2010; 14::25312538.
    [Google Scholar]
  154. Popescu  LM, Manole  CG, Gherghiceanu  M, Ardelean  A, Nicolescu  MI, Hinescu  ME and Kostin  S. Telocytes in human epicardium. J Cell Mol Med. 2010; 14::20852093.
    [Google Scholar]
  155. Olivotto  I, Cecchi  F, Poggesi  C and Yacoub  MH. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat Rev Cardiol. 2009; 6::317321.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ahcsps.2011.11
Loading
/content/journals/10.5339/ahcsps.2011.11
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error