1887
Volume 2025, Issue 1
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

The majority of thyroid cancer patients have a good prognosis. Even in advanced disease, the radioactive iodine (RAI) response improves the prognosis. However, RAI refractoriness poses a significant challenge for these patients. The objective of the study was to assess the expression of SCL5A5 as a potential marker for predicting future resistance to radioiodine treatment.

Radioactive iodine-refractory papillary thyroid carcinoma (RAIR-PTC) and iodine-sensitive papillary thyroid carcinoma (PTC) were included in the study. Demographic and clinicopathological data were retrospectively analyzed. RNA samples were converted to cDNA. Gene expression reactions were performed using synthesized solute carrier family 5 member 5 (SLC5A5) and glyceraldehyde-3-phosphate dehydrogenase (GADPH) primer samples.

Of the patients, 51 (61.4%) had iodine-sensitive PTC and 32 (38.5%) were RAIR-PTC. Patients were followed up for 8 ± 6.4 years. The mean age at diagnosis was higher in the RAIR-PTC group (56.56 ± 15.22 years vs. 46.82 ± 12.43 years, p = 0.002). The PTC group had higher SLC5A5 gene expression than RAIR-PTC. In addition, no statistically significant correlation was observed between basal thyroglobulin levels and tumor standardized uptake value-maximum (SUV-max) on fluorodeoxyglucose positron emission tomography (p = 0.304).

SLC5A5 gene expression is reduced in radioactive iodine-refractory thyroid carcinoma. Furthermore, the decreased expression status of the SLC5A5 gene before preablative iodine treatment may serve as a predictive indicator of future resistance to RAI therapy.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/qmj.2025.5
٢٠٢٥-٠٢-٠٥
٢٠٢٥-١٢-١٥

القياسات

Loading full text...

Full text loading...

/deliver/fulltext/qmj/2025/1/qmj.2025.5.html?itemId=/content/journals/10.5339/qmj.2025.5&mimeType=html&fmt=ahah

References

  1. Zhang L, Feng Q, Wang J, Tan Z, Li Q, Ge M. Molecular basis and targeted therapy in thyroid cancer: Progress and opportunities. Biochim Biophys Acta Rev Cancer. 2023 Jul; 1878:(4):188928. doi: 10.1016/j.bbcan.2023.188928.
    [Google الباحث العلمي]
  2. Geysels RC, Bernal Barquero CE, Martín M, Peyret V, Nocent M, Sobrero G, et al. Silent but not harmless: A synonymous SLC5A5 gene variant leading to dyshormonogenic congenital hypothyroidism. Front Endocrinol (Lausanne). 2022 May4;13:868891. doi: 10.3389/fendo.2022.868891.
    [Google الباحث العلمي]
  3. Daniels GH, Ross DS. Radioactive iodine: A living history. Thyroid. 2023 Jun; 33:(6):666–673. doi: 10.1089/thy.2022.0344.
    [Google الباحث العلمي]
  4. Panda S, Banerjee N, Chatterjee S. Solute carrier proteins and c-Myc: A strong connection in cancer progression. Drug Discov Today. 2020 May; 25:(5):891–900. doi: 10.1016/j.drudis.2020.02.007.
    [Google الباحث العلمي]
  5. Pohlenz J, Refetoff S. Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism. Biochimie. 1999 May; 81:(5):469–47. doi: 10.1016/s0300-9084(99)80097-2.
    [Google الباحث العلمي]
  6. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016 Jan; 26:(1):1–133. doi: 10.1089/thy.2015.0020.
    [Google الباحث العلمي]
  7. Kaewput C, Pusuwan P. Outcomes following I-131 treatment with cumulative dose exceeding or equal to 600 mCi in differentiated thyroid carcinoma patients. World J Nucl Med. 2020 Aug22; 20:(1):54–60. doi: 10.4103/wjnm.WJNM_49_20.
    [Google الباحث العلمي]
  8. Schlumberger M, Lacroix L, Russo D, Filetti S, Bidart J-M. Defect in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab. 2007 Mar; 3:(3):260–269. doi: 10.1038/ncpendmet0449.
    [Google الباحث العلمي]
  9. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006 Feb; 91:(2):498–505. doi: 10.1210/jc.2005-1534.
    [Google الباحث العلمي]
  10. Kersting D, Seifert R, Kessler L, Herrmann K, Theurer S, Brandenburg T, et al. Predictive factors for RAI-refractory disease and short overall survival in PDTC. Cancers (Basel). 2021 Apr6; 13:(7):1728. doi: 10.3390/cancers13071728.
    [Google الباحث العلمي]
  11. Shah JP, Loree TR, Dharker D, Strong EW, Begg C, Vlamis V. Prognostic factors in differentiated carcinoma of the thyroid gland. Am J Surg. 1992 Dec; 164:(6):658–661. doi: 10.1016/s0002-9610(05)80729-9.
    [Google الباحث العلمي]
  12. Mazzaferri EL. An overview of the management of papillary and follicular thyroid carcinoma. Thyroid. 1999 May; 9:(5):421–427. doi: 10.1089/thy.1999.9.421.
    [Google الباحث العلمي]
  13. Hundahl SA, Fleming ID, Fremgen AM, Menck HR. A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995. Cancer. 1998 Dec15; 83:(12):2638–2648. doi: https://doi.org/10.1002/(sici)1097-0142(19981215)83:12<2638:aid-cncr31>3.0.co;2-1 .
    [Google الباحث العلمي]
  14. Faro FN, Bezerra Â, Scalissi NM, Cury AN, Marone MM, Ferraz C, et al. Intermediate-risk thyroid carcinoma: Indicators of a poor prognosis. Arch Endocrinol Metab. 2021 May18; 64:(6):764–771. doi: 10.20945/2359-3997000000290.
    [Google الباحث العلمي]
  15. Ling Y, Xiong X, Luo J, Zou Q, Chen P, Pan L, et al. The efficacy and safety in radioactive iodine refractory thyroid cancer patients treated with sorafenib. Front Endocrinol (Lausanne). 2023 Jul18;14:1200932. doi: 10.3389/fendo.2023.1200932.
    [Google الباحث العلمي]
  16. Martín M, Geysels RC, Peyret V, Bernal Barquero CE, Masini-Repiso AM, Nicola JP. Implications of Na+/I- Symporter transport to the plasma membrane for thyroid hormonogenesis and radioiodide therapy. J Endocr Soc. 2018 Dec5; 3:(1):222-234. doi: 10.1210/js.2018-00100.
    [Google الباحث العلمي]
  17. Faria M, Vareda J, Miranda M, Bugalho MJ, Silva AL, Matos P. Adherens junction integrity is a critical determinant of sodium iodide symporter residency at the plasma membrane of thyroid cells. Cancers (Basel). 2022 Oct31; 14:(21):5362. doi: 10.1210/js.2018-00100.
    [Google الباحث العلمي]
  18. Read ML, Lewy GD, Fong JCW, Sharma N, Seed RI, Smith VE, et al. Proto-oncogene PBF/PTTG1IP regulates thyroid cell growth and represses radioiodide treatment. Cancer Res. 2011 Oct1; 71:(19):6153–6164. doi: 10.1158/0008-5472.CAN-11-0720.
    [Google الباحث العلمي]
/content/journals/10.5339/qmj.2025.5
Loading
/content/journals/10.5339/qmj.2025.5
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Research Article
الموضوعات الرئيسية radioiodine therapysolute carrier family 5 member 5Thyroid neoplasms and thyroid nodule

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error