1887
Volume 2015, Issue 2
  • ISSN: 0253-8253
  • E-ISSN: 2227-0426

Abstract

Sickle cell anemia (SCA) is an inherited blood disease with known complications as a result of certain pathophysiological dysfunctions. It has been suggested that an increase in oxidative stress contributes to the incidence of these changes. This study investigated the oxidant/antioxidant status of patients with SCA, and evaluated the effect of SCA on antioxidant enzymes and their cofactors. The study included 42 patients with SCA (in steady state), and a control group of 50 age-matched individuals without SCA. Serum malondialdehyde (MDA), copper, zinc, ferritin and iron levels, red blood cell (RBC) superoxide dismutase (SOD) and catalase levels were measured for the SCA and control groups. Significantly lower levels of antioxidant enzymes (RBC SOD and catalase) and higher serum MDA levels (biomarker of oxidative stress) were found in SCA patients compared to the control group (all p < 0.001). Increased levels of serum ferritin, iron and copper and decreased zinc concentrations were also found in the SCA patients compared to the control group (all p < 0.001). In the SCA group, there were significant negative correlations between MDA levels and RBC SOD, RBC catalase, and serum zinc levels (p < 0.01), while a significant positive correlation between MDA with serum copper and iron levels (p < 0.01) was observed. SCA is associated with alterations in markers of oxidative stress including an increased MDA level, decreased antioxidant enzyme levels, and altered levels of enzyme cofactors (zinc, copper, and iron). This suggests that these antioxidant enzymes could be used as effective therapeutic targets for the treatment of this disease and supplementation of patients with substances with antioxidant properties may reduce the complications of this disease.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2015.14
2015-12-30
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2015/2/qmj.2015.14.html?itemId=/content/journals/10.5339/qmj.2015.14&mimeType=html&fmt=ahah

References

  1. Beutler E. Disorders of hemoglobin structure: Sickle cell anemia and related abnormalities: Overview. In: Lichtman MABeutler EKipps TJSeligsohn UKaushansky KPrchal J, eds. Williams Hematology. 7th ed. McCraw-Hill Medical Education: New York, NY 2006;:669684.
    [Google Scholar]
  2. Al-Allawi NA, Jalal SD, Nerwey FF, Al-Sayan GO, Al-Zebari SS, Alshingaly AA, Markous RD, Jubrael JM, Hamamy H. Sickle cell disease in the Kurdish population of northern Iraq. Hemoglobin. 2012; 36:4:333342.
    [Google Scholar]
  3. Hassan MK, Taha JY, Al-Naama LM, Widad NM, Jasim SN. Frequency of haemoglobinopathies and glucose-6-phosphate dehydrogenase deficiency in Basra. East Mediterr Health J. 2003; 9:1-2:4554.
    [Google Scholar]
  4. Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin A, Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006; 132:1:108111.
    [Google Scholar]
  5. Fasola F, Adedapo K, Anetor J, Kuti M. Total antioxidants status and some hematological values in sickle cell disease patients in steady state. J Natl Med Assoc. 2007; 99:8:891894.
    [Google Scholar]
  6. Nur E, Biemond BJ, Otten HM, Brandjes DP, Schnog JJ, CURAMA Study Group . Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. Am J Hematol. 2011; 86:6:484489.
    [Google Scholar]
  7. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassemia and sickle cell disease. Redox Biol. 2015; 6::226239.
    [Google Scholar]
  8. Klings ES, Farber HW. Role of free radicals in the pathogenesis of acute chest syndrome in sickle cell disease. Respir Res. 2001; 2:5:280285.
    [Google Scholar]
  9. Odièvre MH, Verger E, Silva-Pinto AC, Elion J. Pathophysiological insights in sickle cell disease. Indian J Med Res. 2011; 134:4:532537.
    [Google Scholar]
  10. Yoshikawa T, Toyokuni S, Yamamoto Y, Naito Y. Free Radicals in Chemistry, Biology and Medicine. London, UK: OICA International 2000:p.580.
    [Google Scholar]
  11. Lunec J. Free radicals: their involvement in disease processes. Ann Clin Biochem. 1990; 27::173182.
    [Google Scholar]
  12. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008; 4::8996.
    [Google Scholar]
  13. Chirico EN, Pialoux V. Role of oxidative stress in the pathogenesis of sickle cell disease. IUBMB Life. 2012; 64:1:7280.
    [Google Scholar]
  14. Sheng K, Shariff M, Hebbel RP. Comparative oxidation of hemoglobins A and S. Blood. 1998; 91:9:34673470.
    [Google Scholar]
  15. Chan AC, Chow CK, Chiu D. Interaction of antioxidants and their implication in genetic anemia. Proc Soc Exp Biol Med. 1999; 222:3:274282.
    [Google Scholar]
  16. Vichinsky E. Emerging ‘A’ therapies in hemoglobinopathies: Agonists, antagonists, antioxidants, and arginine. Hematology Am Soc Hematol Educ Program. 2012; 2012::271275.
    [Google Scholar]
  17. Aslan M, Thornley-Brown D, Freeman BA. Reactive species in sickle cell disease. Ann New York Acad Sci. 2000; 899::375391.
    [Google Scholar]
  18. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006; 52:4:601623.
    [Google Scholar]
  19. Bray TM, Bettger WJ. The physiological role of zinc as antioxidant. Free Radic Biol Med. 1990; 8::281291.
    [Google Scholar]
  20. Walter PB, Fung EB, Killilea DW, Jiang Q, Hudes M, Madden J, Porter J, Evans P, Vichinsky E, Harmatz P. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006; 135:2:254263.
    [Google Scholar]
  21. Animasahun BA, Temiye EO, Ogunkunle OO, Izuora AN, Njokanma OF. The influence of socioeconomic status on the hemoglobin level and anthropometry of sickle cell anemia patients in steady state at the Lagos University Teaching Hospital. Niger J Clin Pract. 2011; 14:4:422427.
    [Google Scholar]
  22. Winterbourn CC, Hawkins RE, Brian M, Carrell RW. The estimation of red cell superoxide dismutase activity. J Lab Clin Med. 1975; 85:2:337341.
    [Google Scholar]
  23. Aebi H. Catalase. In: Bergmeyer HU, ed. Methods of Enzymatic Analysis. New York: Academic Press 1974;:647683.
    [Google Scholar]
  24. Buege JA, Aust SD. Microsomal lipid peroxidation. In: Fleischer SPacker L, eds. Methods in Enzymology, Vol 52, Biomembranes, Part C, Biological Oxidations: Microsomal, Cytochrome P-450, and Other Homoprotein Systems . New York: Academic Press 1978;:302310.
    [Google Scholar]
  25. Whiteside PJ. Pye Unicam Atomic Absorption Data Book. 2nd ed. England: Pye Unicam Ltd 1976.
    [Google Scholar]
  26. Rogers SC, Ross JG, d'Avignon A, Gibbons LB, Gazit V, Hassan MN, McLaughlin D, Griffin S, Neumayr T, Debaun M, DeBaun MR, Doctor A. Sickle hemoglobin disturbs normal coupling among erythrocyte O2 content, glycolysis, and antioxidant capacity. Blood. 2013; 121:9:16511662.
    [Google Scholar]
  27. Wood KC, Granger DN. Sickle cell disease: Role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol. 2007; 34:9:926932.
    [Google Scholar]
  28. Manfredini V, Lazzaretti LL, Griebeler IH, Santin AP, Brandão VD, Wagner S, Castro SM, Peralba Mdo C, Benfato MS. Blood antioxidant parameters in sickle cell anemia patients in steady state. J Natl Med Assoc. 2008; 100:8:897902.
    [Google Scholar]
  29. Hundekar P, Suryakar A, Karnik A, Ghone R, Vasaikar M. Antioxidant status and lipid peroxidation in sickle cell anemia. Biomed Res. 2010; 21:4:461464.
    [Google Scholar]
  30. Emokpae AM, Uadia PO, Kuliya-Gwarzo A. Antioxidant enzymes and acute phase proteins correlate with marker of lipid peroxide in adult Nigerian sickle disease patients. Iranian J of Basic Medical Science. 2010; 13:4:177182.
    [Google Scholar]
  31. Moore RB, Hulgan TM, Green JW, Jenkins LD. Increased susceptibility of the sickle cell membrane Ca2++ Mg2+ -ATPase to t-butylhydroperoxide: protective effects of ascorbate and desferal. Blood. 1992; 79:5:13341341.
    [Google Scholar]
  32. Kumerova A, Lece A, Skesters A, Silova A, Petuhovs V. Anemia and antioxidant defence of the red blood cells. Mater Med Pol. 1998; 30:1-2:1215.
    [Google Scholar]
  33. Tamer L, Polat G, Yücebilgiç G, Güvenç B, Bas¸lamıs¸lı F. The levels of sera malondialdehyde, erythrocyte membrane Na+-K+/Mg++ and Ca++/Mg++ adenosine 5’ triphosphatase in patients with sickle cell anemia. Turk J Haematol. 2000; 17::2326.
    [Google Scholar]
  34. Adelakun A, Ajani O, Ogunleye T, Disu E, Kosoko A, Arinola G. Respiratory burst enzymes and oxidant-antioxidant status in Nigerian children with sickle cell disease. Br Biotechnology J. 2014; 4:3:270278.
    [Google Scholar]
  35. Hundekar P, Suryakar AN, Karnik AC, Valvi R, Ghone RA, Bhagat SS. The effect of antioxidant supplementation on the oxidant and antioxidant status in sickle cell anemia. J Clin Diag Res. 2011; 5:7:13391342.
    [Google Scholar]
  36. Al-Sultan AI, Seif MA, Amin TT, Naboli M, Alsuliman AM. Relationship between oxidative stress, ferritin and insulin resistance in sickle cell disease. Eur Rev Med Pharmacol Sci. 2010; 14:6:527538.
    [Google Scholar]
  37. Gizi A, Papassotiriou I, Apostolakou F, Lazaropoulou C, Papastamataki M, Kanavaki I, Kalotychou V, Goussetis E, Kattamis A, Rombos I, Kanavakis E. Assessment of oxidative stress in patients with sickle cell disease: The glutathione system and the oxidant-antioxidant status. Blood Cells Mol Dis. 2011; 46:3:220225.
    [Google Scholar]
  38. Liu SC, Yi SJ, Mehta JR, Nichols PE, Ballas SK, Yacono PW, Golan DE, Palek J. Red cell membrane remodeling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies. J Clin Invest. 1996; 97:1:2936.
    [Google Scholar]
  39. Prasad AS. Zinc deficiency in patients with sickle cell disease. Am J Clin Nutr. 2002; 75:2:181182.
    [Google Scholar]
  40. Prasad AS. Discovery of human zinc deficiency: Its impact on human health and disease. Adv Nutr. 2013; 4::176190.
    [Google Scholar]
  41. Mahdi JK. Plasma zinc level in patients with sickle cell anemia. Tech Res J. 2001; 78::713.
    [Google Scholar]
  42. Akenami FO, Aken'Ova YA, Osifo BO. Serum zinc, copper and magnesium in sickle cell disease at Ibadan, South western Nigeria. Afr J Med Sci. 1999; 28:3–4:137139.
    [Google Scholar]
  43. Bashir NA. Serum zinc and copper levels in sickle cell anemia and beta-thalassemia in North Jordan. Ann Trop Paediatr. 1995; 15:4:291293.
    [Google Scholar]
  44. Osredkar J, Sustar N. Copper and zinc, biological role and significance of copper/zinc imbalance. J Clinic Toxicol. 2011; S3::001. doi: 10.4172/2161-0495.S3-001.
    [Google Scholar]
  45. Dos Santos TE, de Sousa GF, Barbosa MC, Gonçalves RP. The role of iron overload on oxidative stress in sickle cell anemia. Biomark Med. 2012; 6:6:813819.
    [Google Scholar]
  46. Abiodun EM, Aisha KG. The association of transfusion status with antioxidant enzymes and malondialdehyde level in Nigerians with sickle cell disease. Asian J Tranfus Sci. 2014; 8:1:4750.
    [Google Scholar]
  47. Canellas CG, Carvalho SM, Anjos MJ, Lopes RT. Determination of Cu/Zn and Fe in human serum of patients with sickle cell anemia using radiation synchrotron. Appl Radiat Isot. 2012; 70:7:12771280.
    [Google Scholar]
  48. Gabriel A, Przybylski J. Sickle-Cell anemia: A look at global haplotype distribution. Nature Education. 2010; 3:3:2.
    [Google Scholar]
  49. Loggetto SR. Sickle cell anemia: Clinical diversity and beta S-globin haplotypes. Rev Bras Hematol Hemoter. 2013; 35:3:155157.
    [Google Scholar]
  50. Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998; 11:1:151.
    [Google Scholar]
  51. Inati A, Taher A, Bou Alawi W, Koussa S, Kaspar H, Shbaklo H, Zalloua PA. Beta-globin gene cluster haplotypes and HbF levels are not the only modulators of sickle cell disease in Lebanon. Eur J Haematol. 2003; 70:2:7983.
    [Google Scholar]
  52. Hamamy HA, Al-Allawi NA. Epidemiological profile of common haemoglobinopathies in Arab countries. J Community Genet. 2013; 4:2:147167.
    [Google Scholar]
  53. Bao B, Prasad AS, Beck FWJ, Snell D, Suneja A, Sarkar FH, Doshi N, Fitzgerald JT, Swerdlow P. Zinc supplementation decreases oxidative stress, incidence of infection and generation of inflammatory cytokines in sickle cell disease patients. Transl Res. 2008; 152:2:6780.
    [Google Scholar]
  54. Arruda MM, Mecabo G, Rodrigues CA, Matsuda SS, Rabelo IB, Figueiredo MS. Antioxidant vitamins C and E supplementation increases markers of haemolysis in sickle cell anaemia patients: a randomized, double-blind, placebo-controlled trial. Br J Haematol. 2013; 160:5:688700.
    [Google Scholar]
  55. Wood KC, Hsu LL, Gladwin MT. Sickle cell disease vasculopathy: A state of nitric oxide resistance. Free Radic Biol Med. 2008; 44::15061528.
    [Google Scholar]
  56. Silva DG, Belini Junior E, de Almeida EA, Bonini-Domingos CR. Oxidative stress in sickle cell disease: An overview of erythrocyte redox metabolism and current antioxidant therapeutic strategies. Free Radic Biol Med. 2013; 65::11011109.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2015.14
Loading
/content/journals/10.5339/qmj.2015.14
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error