1887
Volume 2026, Issue 1
  • E-ISSN: 2223-506X

Population growth and industrial expansion have intensified environmental degradation, with water scarcity and carbon emissions emerging as pressing global challenges. In arid regions, seawater desalination is widely adopted to meet freshwater demand, but it generates a concentrated waste stream-reject brine-rich in divalent ions such as Ca2+ and Mg2+. Simultaneously, the cement industry produces large volumes of cement kiln dust (CKD), an alkaline by-product often discarded as waste. This study presents an integrated approach that simultaneously addresses reject brine management, CO sequestration, and CKD valorization through mineral carbonation. Under optimal leaching conditions (100 g/L CKD, 15 minutes), over 98% of Mg2+ was removed from the brine, and Ca2+ concentrations increased to 6.82 g/L. CO bubbling into the treated brine resulted in carbonate precipitation, yielding products with mixed mineralogy. While phase-pure calcite was obtained in most cases, nesquehonite (MgCO•3HO) also formed. Scanning electron microscopy and X-ray diffraction analyses confirmed distinct morphologies and compositions. Product yield ranged from 1.55 to 2.81 g/L, and calcium concentrations in the final solution remained relatively high, indicating incomplete precipitation of the product. These findings show that while CKD alone cannot ensure complete CaCO recovery, it substantially reduces the need for synthetic alkalis. The findings demonstrate a sustainable pathway for CO capture and waste valorization, contributing to circular economy efforts in the water and construction sectors.

Loading

جارٍ تحميل قياسات المقالة...

/content/journals/10.5339/connect.2026.1
٢٠٢٦-٠١-٢٥
٢٠٢٦-٠١-٢٧

القياسات

Loading full text...

Full text loading...

/deliver/fulltext/connect/2026/1/connect.2026.issue1.1.html?itemId=/content/journals/10.5339/connect.2026.1&mimeType=html&fmt=ahah

References

  1. Yang X, Khan I. Dynamics among economic growth, urbanization, and environmental sustainability in IEA countries: the role of industry value-added. Environmental Science and Pollution Research. 2022; 29:(3):4116–4127. doi: 10.1007/s11356-021-16000-z
    [Google الباحث العلمي]
  2. Mustafa J, Mourad AAHI, Al-Marzouqi AH, El-Naas MH. Simultaneous treatment of reject brine and capture of carbon dioxide: a comprehensive review. Desalination. 2020; 483:114386. doi: 10.1016/j.desal.2020.114386
    [Google الباحث العلمي]
  3. Missimer TM, Maliva RG, Whitaker UA. Environmental issues in seawater reverse osmosis desalination: intakes and outfalls. Desalination. 2018; 434:198–215. doi: 10.1016/j.desal.2017.07.012
    [Google الباحث العلمي]
  4. Jaime J, Alonso S, Melián-Martel N. Environmental regulations—inland and coastal desalination case studies. In: Gude VG. (ed.) Sustainable desalination handbook: plant selection, design and implementation. Butterworth-Heinemann; 2018. doi: 10.1016/B978-0-12-809240-8.00010-1
    [Google الباحث العلمي]
  5. Panagopoulos A, Haralambous KJ, Loizidou M. Desalination brine disposal methods and treatment technologies - a review. Science of the Total Environment. 2019; 693:133545. doi: 10.1016/j.scitotenv.2019.07.351
    [Google الباحث العلمي]
  6. Ariono D, Purwasasmita M, Wenten IG. Brine effluents: characteristics, environmental impacts, and their handling. Journal of Engineering and Technological Sciences. 2016; 48:(4):367–387. doi: 10.5614/j.eng.technol.sci.2016.48.4.1
    [Google الباحث العلمي]
  7. Panagopoulos A, Giannika V. Comparative techno-economic and environmental analysis of minimal liquid discharge (MLD) and zero liquid discharge (ZLD) desalination systems for seawater brine treatment and valorization. Sustainable Energy Technologies and Assessments. 2022; 53:102477. doi: 10.1016/j.seta.2022.102477
    [Google الباحث العلمي]
  8. Mourad AAHI, Mohammad AF, Al-Marzouqi AH, El-Naas MH, Al-Marzouqi MH, Altarawneh M. CO2 capture and ions removal through reaction with potassium hydroxide in desalination reject brine: statistical optimization. Chemical Engineering and Processing - Process Intensification. 2022; 170:108722. doi: 10.1016/j.cep.2021.108722
    [Google الباحث العلمي]
  9. Ruan H, Wu S, Chen X, Zou J, Liao J, Cui H, et al. Capturing CO2 with NaOH solution from reject brine via an integrated technology based on bipolar membrane electrodialysis and hollow fiber membrane contactor. Chemical Engineering Journal. 2022; 450:138095. doi: 10.1016/j.cej.2022.138095
    [Google الباحث العلمي]
  10. Chaliulina R. Precipitated calcium carbonate: recycling carbon dioxide and industrial waste brines. Aberdeen: University of Aberdeen. doi: 10.13140/RG.2.2.27644.05765
  11. Chaliulina R. On sustainable production of CaCO3 via monohydrocalcite—a carbon capture and mineralisation product from waste brines. Green and Sustainable Chemistry. 2023; 13:(01):34–61. doi: 10.4236/gsc.2023.131004
    [Google الباحث العلمي]
  12. Jimoh OA, Ariffin KS, Hussin HB, Temitope AE. Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites. 2018; 33:(2):331–346. doi: 10.1007/s13146-017-0341-x
    [Google الباحث العلمي]
  13. Guo Y, Niu Z, Lin W. Comparison of removal efficiencies of carbon dioxide between aqueous ammonia and NaOH solution in a fine spray column. Energy Procedia. 2011; 4:512–518. doi: 10.1016/j.egypro.2011.01.082
    [Google الباحث العلمي]
  14. Mahmud N, Ibrahim MH, Fraga Alvarez DV, Esposito DV, El-Naas MH. Evaluation of parameters controlling calcium recovery and CO2 uptake from desalination reject brine: an optimization approach. Journal of Cleaner Production. 2022; 369:133405. doi: 10.1016/j.jclepro.2022.133405
    [Google الباحث العلمي]
  15. Bang JH, Yoo Y, Lee SW, Song K, Chae S. CO2 mineralization using brine discharged from a seawater desalination plant. Minerals. 2017; 7:(11):207. doi: 10.3390/min7110207
    [Google الباحث العلمي]
  16. Bang JH, Chae SC, Lee SW, Kim JW, Song K, Kim J, et al. Sequential carbonate mineralization of desalination brine for CO2 emission reduction. Journal of CO2 Utilization. 2019; 33:427–433. doi: 10.1016/j.jcou.2019.07.020
    [Google الباحث العلمي]
  17. El-Naas MH, Al-Marzouqi AH, Chaalal O. A combined approach for the management of desalination reject brine and capture of CO2. Desalination. 2010; 251:(1–3):70–74. doi: 10.1016/j.desal.2009.09.141
    [Google الباحث العلمي]
  18. Nosova EN, Musatova DM, Melnikov SS, Zabolotsky VI. Exploring the production of sodium hydroxide via bipolar electrodialysis from sodium carbonate solutions. Membranes and Membrane Technologies. 2023; 13:(5):347–357. doi: 10.31857/S221811722305005X
    [Google الباحث العلمي]
  19. Dotson RL. Industrial process for the production of a KOH-based product substantially free from chlorate ions. Journal of Applied Chemistry and Biotechnology. 2019; 25:(6):461–464. doi: 10.1002/jctb.5020250608
    [Google الباحث العلمي]
  20. Ma J, Hu C, Zhao J, Jiang Z, Wang D, Ouyang X, et al. Radiocatalytic synthesis of ammonia under ambient conditions with efficiency exceeding that of Haber–Bosch process. Research Square. 2024. doi: 10.21203/rs.3.rs-4383337/v1
    [Google الباحث العلمي]
  21. Amin AEEAZ, Selmy SAH. Effect of pH on removal of Cu, Cd, Zn, and Ni by cement kiln dust in aqueous solution. Communications in Soil Science and Plant Analysis. 2017; 48:(11):1301–1308. doi: 10.1080/00103624.2017.1341914
    [Google الباحث العلمي]
  22. Mackie A, Boilard S, Walsh ME, Lake CB. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment. Journal of Hazardous Materials. 2010; 173:(1–3):283–291. doi: 10.1016/j.jhazmat.2009.08.081
    [Google الباحث العلمي]
  23. ElNaggar KAM, Ahmed MM, Abbas W, Abdel Hami. EM. Recycling of bypass cement kiln dust in the production of eco-friendly roof tiles. Materials Research Express. 2023; 10:(6):065505. doi: 10.1088/2053-1591/acddb9
    [Google الباحث العلمي]
  24. Nikolov A, Kostov-Kytin V, Tarassov M, Tsvetanova L, Lazarova H, Tasheva T. Products of carbonation of cement kiln dust. Review of the Bulgarian Geological Society. 2024; 85:(3):163–166. doi: 10.52215/rev.bgs.2024.85.3.163
    [Google الباحث العلمي]
  25. United State. Environmental Protection Agency. Study on increasing the usage of recovered mineral components in federally funded projects involving procurement of cement or concrete: Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users. Report to Congress. Washington, DC: United States Environmental Protection Agency; 2008 cited2026Jan3. Available from: https://www.epa.gov/sites/default/files/2016-03/documents/report4-08.pdf
    [Google الباحث العلمي]
  26. Qatar Nationa. Cement Company (QNCC) (n.d.). Company profile. Available from: https://www.qatarcement.com/company-profile/ (Accessed: 18 September 2025).
    [Google الباحث العلمي]
  27. Phillips VA, Kolbe JL, Opperhauser H. Electron microscope observations on the growth of Mg(OH)2 crystals. Hydrosols and Rheology. 1976; 169–182. doi: 10.1016/B978-0-12-404504-0.50018-6
    [Google الباحث العلمي]
  28. Bang JH, Chae SC, Song K, Lee SW. Optimizing experimental parameters in sequential CO2 mineralization using seawater desalination brine. Desalination. 2021; 519:115309. doi: 10.1016/j.desal.2021.115309
    [Google الباحث العلمي]
  29. Zhang F, Zhu H, Wu Q, Yin Z, Zhu Z, Hua S. Research on the strength reduction mechanism of cement kiln dust (CKD) – Portland cement systems from macroscale and nanoscale. Construction and Building Materials. 2024; 425:135997. doi: 10.1016/j.conbuildmat.2024.135997
    [Google الباحث العلمي]
  30. Uliasz-Bocheńczyk A, Deja J. Potential application of cement kiln dust in carbon capture, utilisation, and storage technology. Energy. 2024; 292:130412. doi: 10.1016/j.energy.2024.130412
    [Google الباحث العلمي]
  31. Abdel-Gawwad HA, Heikal M, Mohammed MS, El-Aleem SA, Hassan HS, García SRV, et al. Sustainable disposal of cement kiln dust in the production of cementitious materials. Journal of Cleaner Production. 2019; 232:1218–1229. doi: 10.1016/j.jclepro.2019.06.016
    [Google الباحث العلمي]
  32. El-Sayed Seleman MM, El-kheshen AA, Kharbish S, Ebrahim WR. Utilization of cement kiln dust for the preparation of borosilicate glass. InterCeram - International Ceramic Review. 2020; 69:(6):26–33. doi: 10.1007/s42411-020-0426-8
    [Google الباحث العلمي]
  33. Lee WS, Choi YC. Hydration and mechanical properties of cement kiln dust-blended cement composite. Materials (Basel). 2024; 17:(19):4841. doi: 10.3390/ma17194841
    [Google الباحث العلمي]
  34. Liu Q, Maroto-Valer MM. Studies of pH buffer systems to promote carbonate formation for CO2 sequestration in brines. Fuel Processing Technology. 2012; 98:6–13. doi: 10.1016/j.fuproc.2012.01.023
    [Google الباحث العلمي]
  35. Cheng H, Zhang X, Song H. Morphological investigation of calcium carbonate during ammonification-carbonization process of low concentration calcium solution. Journal of Nanomaterials. 2014; 2014:503696. doi: 10.1155/2014/503696
    [Google الباحث العلمي]
  36. Zukaityte A, Chaliulina R, Galvez-Martos JL, Elhoweris A, Alhorr Y. Simultaneous brine and CO2 utilization in construction material production: a life cycle assessment. Materials Research Proceedings. 2025; 48:784–792. doi: 10.21741/9781644903414-85
    [Google الباحث العلمي]
  37. Gálvez-Martos JL, Chaliulina R, Medina-Martos E, Elhoweris A, Hakki A, Mwanda J, et al. Eco-efficiency of a novel construction material produced by carbon capture and utilization. Journal of CO2 Utilization. 2021; 49:101545. doi: 10.1016/j.jcou.2021.101545
    [Google الباحث العلمي]
/content/journals/10.5339/connect.2026.1
Loading
/content/journals/10.5339/connect.2026.1
Loading

جارٍ تحميل البيانات والوسائط...

  • نوع المستند: Research Article
الموضوعات الرئيسية calcite, calcium carbonate, CCU, carbon capture and utilization, desalination reject brine, cement kiln dust

الأكثر اقتباسًا لهذا الشهر Most Cited RSS feed

هذه الخانة مطلوبة
يُرجى إدخال عنوان بريد إلكتروني صالح
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error