1887
Volume 2025, Issue 2
  • EISSN: 2220-2749

Abstract

Diabetic ketoacidosis (DKA) is a life-threatening complication of diabetes that can lead to cerebral edema, organ failure, and even death. Traditional diagnosis depends on clinical assessment and laboratory tests, which may delay recognition and overlap with other conditions. Recent advances in artificial intelligence (AI), particularly machine learning (ML), present opportunities to improve early diagnosis, risk stratification, and management of DKA. Various ML models—such as Random Forest, K-Nearest Neighbors, XGBoost, and Long Short-Term Memory networks—have demonstrated high predictive accuracy for assessing DKA severity, prognosis, and mortality. However, many of these studies are limited by small, single-center cohorts and lack external validation. Although AI shows strong potential to transform DKA care, further standardization, validation across diverse populations, and integration into clinical workflows are required before routine adoption.

Loading

Article metrics loading...

/content/journals/10.5339/avi.2025.16
2025-11-03
2025-12-07

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/avi/2025/2/avi.2025.16.html?itemId=/content/journals/10.5339/avi.2025.16&mimeType=html&fmt=ahah

References

  1. American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care. 2024 Dec 9; 48:(Supplement_1):S27–49.
    [Google Scholar]
  2. Olimjonovna KO. Understanding the Causes and Risk Factors Of Diabetes. Biol Va Kim Fanlari Ilmiy Jurnali. 2024 May 20; 2:(5):1–7.
    [Google Scholar]
  3. Zhou B, Rayner AW, Gregg EW, Sheffer KE, Carrillo-Larco RM, Bennett JE, et al.. Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: a pooled analysis of 1108 population-representative studies with 141 million participants. The Lancet. 2024 Nov 23; 404:(10467):2077–93.
    [Google Scholar]
  4. Alam S, Hasan MK, Neaz S, Hussain N, Hossain MF, Rahman T. Diabetes Mellitus: Insights from Epidemiology, Biochemistry, Risk Factors, Diagnosis, Complications and Comprehensive Management. Diabetology. 2021 June; 2:(2):36–50.
    [Google Scholar]
  5. Barski L, Golbets E, Jotkowitz A, Schwarzfuchs D. Management of diabetic ketoacidosis. Eur J Intern Med. 2023 Nov 1;:117:38–44.
    [Google Scholar]
  6. Bedaso A, Oltaye Z, Geja E, Ayalew M. Diabetic ketoacidosis among adult patients with diabetes mellitus admitted to emergency unit of Hawassa university comprehensive specialized hospital. BMC Res Notes. 2019 Mar 14; 12:(1):137.
    [Google Scholar]
  7. Virdi N, Poon Y, Abaniel R, Bergenstal RM. Prevalence, Cost, and Burden of Diabetic Ketoacidosis. Diabetes Technol Ther. 2023 June; 25:(S3):S-75.
    [Google Scholar]
  8. Zewdu B, Belachew T, Ahmed K, Tilahun L, Dagnaw K. Incidence and determinants of diabetic ketoacidosis among people with diabetes in Woldiya comprehensive specialized hospital, Ethiopia: a retrospective cohort study. BMC Endocr Disord.2024 Mar 11:24:34.
    [Google Scholar]
  9. Ata F, Khan AA, Khamees I, Mohammed BZM, Barjas HH, Muthanna B, et al.. Differential evolution of diabetic ketoacidosis in adults with pre-existent versus newly diagnosed type 1 and type 2 diabetes mellitus. BMC Endocr Disord. 2023 Sept 12:23:193.
    [Google Scholar]
  10. Lei C, Sun W, Wang K, Weng R, Kan X, Li R. Artificial intelligence-assisted diagnosis of early gastric cancer: present practice and future prospects. Ann Med. 2025 Dec 31; 57:(1):2461679.
    [Google Scholar]
  11. Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019 June; 6:(2):94–8.
    [Google Scholar]
  12. Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotechnol. 2015 Aug; 33:(8):831–8.
    [Google Scholar]
  13. AlSamhori AF, AlSamhori JF, Dib C, AlSamhori ARF, Shehadeh MW, Rihani J, et al.. Implication of artificial intelligence on astrocytoma detection and treatment. Avicenna. 2025 Mar 17; 2025:(1):3.
    [Google Scholar]
  14. AlSamhori JF, AlSamhori ARF, Kakish D, Nashwan AJ. Transforming Depression Care with Artificial Intelligence. Asian J Psychiatry. 2024 Sept 7;104235.
    [Google Scholar]
  15. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al.. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017 Feb 2; 542:(7639):115–8.
    [Google Scholar]
  16. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018 Aug; 18:(8):500–10.
    [Google Scholar]
  17. Kakish DRK, AlSamhori JF, Ayman A, Al-Sawalha M, Hijazeen T, Clementina R, et al.. Amelanotic melanoma: Diagnostic challenges, treatment innovations, and the emerging role of AI in early detection. J Med Surg Public Health. 2025 Aug 1:6:100189.
    [Google Scholar]
  18. Kakish DRK, AlSamhori JF, Fajardo ANR, Qaqish LN, Jaber LA, Abujudeh R, et al.. Transforming Dermatopathology With AI: Addressing Bias, Enhancing Interpretability, and Shaping Future Diagnostics. Dermatol Rev. 2025; 6:(1):e70018.
    [Google Scholar]
  19. Kapoor R, Walters SP, Al-Aswad LA. The current state of artificial intelligence in ophthalmology. Surv Ophthalmol. 2019 Mar; 64:(2):233–40.
    [Google Scholar]
  20. Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al.. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. 2019 Oct; 1:(6):e271–97.
    [Google Scholar]
  21. Vasey B, Ursprung S, Beddoe B, Taylor EH, Marlow N, Bilbro N, et al.. Association of Clinician Diagnostic Performance With Machine Learning–Based Decision Support Systems: A Systematic Review. JAMA Netw Open. 2021 Mar 11; 4:(3):e211276.
    [Google Scholar]
  22. Yuan Y, Shi Y, Li C, Kim J, Cai W, Han Z, et al.. DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations. BMC Bioinformatics. 2016 Dec; 17:(S17):476.
    [Google Scholar]
  23. Naveed M, Javed K, Aziz T, Zafar A, Fatima M, Ali I, et al.. Redefining a new frontier in alkaptonuria therapy with AI-driven drug candidate design via in-silico innovation. Z Für Naturforschung C. 2025 Mar 26; 80:(3–4):135–49.
    [Google Scholar]
  24. Ul Ain N, Naveed M, Aziz T, Shabbir MA, Al Asmari F, Abdi G, et al.. Mix-match synthesis of nanosynbiotics from probiotics and prebiotics to counter gut dysbiosis via AI integrated formulation profiling. Sci Rep. 2024 Aug 8; 14:(1):18397.
    [Google Scholar]
  25. Naveed M, Javed K, Aziz T, Zafar A, Fatima M, Rehman HM, et al.. Innovative Approach of High-Throughput Screening in the Drug Discovery Quest for Chronic Bronchitis Treatment. J Comput Biophys Chem. 2025 Mar; 24:(02):173–87.
    [Google Scholar]
  26. Ghimire P, Dhamoon AS. Ketoacidosis. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 July 19]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK534848/
    [Google Scholar]
  27. Calimag APP, Chlebek S, Lerma EV, Chaiban JT. Diabetic ketoacidosis. Dis Mon.2023 Mar 1; 69:(3):101418.
    [Google Scholar]
  28. Elendu C, David JA, Udoyen AO, Egbunu EO, Ogbuiyi-Chima IC, Unakalamba LO, et al.. Comprehensive review of diabetic ketoacidosis: an update. Ann Med Surg. 2023 June; 85:(6):2802.
    [Google Scholar]
  29. Eshkoli T, Barski L, Faingelernt Y, Jotkowitz A, Finkel-Oron A, Schwarzfuchs D. Diabetic ketoacidosis in pregnancy – Case series, pathophysiology, and review of the literature. Eur J Obstet Gynecol Reprod Biol. 2022 Feb 1;:269:41–6.
    [Google Scholar]
  30. Umpierrez GE, Kitabchi AE. Diabetic ketoacidosis: risk factors and management strategies. Treat Endocrinol. 2003; 2:(2):95–108.
    [Google Scholar]
  31. Chandra D, Bsavaraju M, Mr R, Av A, R S. Serum Amylase and Lipase Estimation in Diabetic Ketoacidosis. J Assoc Physicians India. 2022 Apr; 70:(4):11–2.
    [Google Scholar]
  32. Kostopoulou E, Sinopidis X, Fouzas S, Gkentzi D, Dassios T, Roupakias S, et al.. Diabetic Ketoacidosis in Children and Adolescents; Diagnostic and Therapeutic Pitfalls. Diagn Basel Switz. 2023 Aug 4; 13:(15):2602.
    [Google Scholar]
  33. Sehgal M, Batra M, Jha P, Sanchez O. Risk Factors and Laboratory Findings Associated With Diabetic Ketoacidosis in Hospitalized Pediatric Patients. Cureus. 2022 May; 14:(5):e25410.
    [Google Scholar]
  34. Stevens JS, Bogun MM, McMahon DJ, Zucker J, Kurlansky P, Mohan S, et al.. Diabetic ketoacidosis and mortality in COVID-19 infection. Diabetes Metab. 2021 Nov; 47:(6):101267.
    [Google Scholar]
  35. Kumar A, Pannu AK, Kumar M, Angrup A, Dutta P, Sharma N. Sepsis screening tools for predicting infection triggers and outcomes in diabetic ketoacidosis. Biomark Med. 2023 Nov; 17:(22):947–58.
    [Google Scholar]
  36. Semenkovich K, Berlin KS, Ankney RL, Klages KL, Keenan ME, Rybak TM, et al.. Predictors of diabetic ketoacidosis hospitalizations and hemoglobin A1c among youth with Type 1 diabetes. Health Psychol. 2019 July; 38:(7):577–85.
    [Google Scholar]
  37. Song C, Dhaliwal S, Bapat P, Scarr D, Bakhsh A, Budhram D, et al.. Point-of-Care Capillary Blood Ketone Measurements and the Prediction of Future Ketoacidosis Risk in Type 1 Diabetes. Diabetes Care. 2023 Nov 1; 46:(11):1973–7.
    [Google Scholar]
  38. Rubin DJ, Handorf EA, Golden SH, Nelson DB, McDonnell ME, Zhao H. Development and Validation of a Novel Tool to Predict Hospital Readmission Risk Among Patients with Diabetes. Endocr Pract. 2016 Oct; 22:(10):1204–15.
    [Google Scholar]
  39. Muneer M, Akbar I. Acute Metabolic Emergencies in Diabetes: DKA, HHS and EDKA. Islam MdS, editor. Diabetes: from Research to Clinical Practice [Internet]. Cham: Springer International Publishing; 2020 [cited 2024 Aug 23]. p. 85–114. (Advances in Experimental Medicine and Biology; vol. 1307). Available from: https://link.springer.com/10.1007/5584_2020_545
    [Google Scholar]
  40. Tao LC, Shu H, Wang Y, Hou Q, Li JJ, Huang XL, et al.. Inflammatory biomarkers predict higher risk of hyperglycemic crises but not outcomes in diabetic patients with COVID-19. Front Endocrinol. 2024 Feb 15;:15:1287795.
    [Google Scholar]
  41. Arora S, Henderson SO, Long T, Menchine M. Diagnostic Accuracy of Point-of-Care Testing for Diabetic Ketoacidosis at Emergency-Department Triage. Diabetes Care.2011 Apr 1; 34:(4):852–4.
    [Google Scholar]
  42. Rodríguez-Villar S, Poza-Hernández P, Freigang S, Zubizarreta-Ormazabal I, Paz-Martín D, Holl E, et al.. Automatic real-time analysis and interpretation of arterial blood gas sample for Point-of-care testing: Clinical validation. Chen TH, . PLOS ONE. 2021 Mar 10; 16:(3):e0248264.
    [Google Scholar]
  43. Bolla AS, Priefer R. Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes Metab Syndr Clin Res Rev. 2020 Sept; 14:(5):739–51.
    [Google Scholar]
  44. Long B, Lentz S, Koyfman A, Gottlieb M. Euglycemic diabetic ketoacidosis: Etiologies, evaluation, and management. Am J Emerg Med. 2021 June; 44:157–60.
    [Google Scholar]
  45. Healy AM, Faherty M, Khan Z, Emara N, Carter C, Scheidemantel A, et al.. Diabetic ketoacidosis diagnosis in a hospital setting. J Osteopath Med. 2023 July 21; 123:(10):499–503.
    [Google Scholar]
  46. Nasa P, Chaudhary S, Shrivastava PK, Singh A. Euglycemic diabetic ketoacidosis: A missed diagnosis. World J Diabetes. 2021 May 15; 12:(5):514–23.
    [Google Scholar]
  47. Mohajan D, Mohajan H. Diabetic Ketoacidosis (DKA): A Severe Diabetes Mellitus Disorder. Stud Soc Sci Humanit. 2023 Sept 4:2:29–34.
    [Google Scholar]
  48. Perilli G, Saraceni C, Daniels MN, Ahmad A. Diabetic Ketoacidosis: A Review and Update. Curr Emerg Hosp Med Rep. 2013 Mar 1; 1:(1):10–7.
    [Google Scholar]
  49. Makroum MA, Adda M, Bouzouane A, Ibrahim H. Machine Learning and Smart Devices for Diabetes Management: Systematic Review. Sensors. 2022 Feb 25; 22:(5):1843.
    [Google Scholar]
  50. Guan Z, Li H, Liu R, Cai C, Liu Y, Li J, et al.. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep Med. 2023 Oct; 4:(10):101213.
    [Google Scholar]
  51. Hamed E, Sharif A, Eid A, Alfehaidi A, Alberry M. Advancing Artificial Intelligence for Clinical Knowledge Retrieval: A Case Study Using ChatGPT-4 and Link Retrieval Plug-In to Analyze Diabetic Ketoacidosis Guidelines. Cureus [Internet]. 2023 July 15 [cited 2024 Aug 6]; Available from: https://www.cureus.com/articles/163482-advancing-artificial-intelligence-for-clinical-knowledge-retrieval-a-case-study-using-chatgpt-4-and-link-retrieval-plug-in-to-analyze-diabetic-ketoacidosis-guidelines
    [Google Scholar]
  52. Tyler NS, Mosquera-Lopez CM, Wilson LM, Dodier RH, Branigan DL, Gabo VB, et al.. An artificial intelligence decision support system for the management of type 1 diabetes. Nat Metab.2020 June 1; 2:(7):612–9.
    [Google Scholar]
  53. Gerwer JE, Bacani G, Juang PS, Kulasa K. Electronic Health Record–Based Decision-Making Support in Inpatient Diabetes Management. Curr Diab Rep. 2022 Sept 1; 22:(9):433–40.
    [Google Scholar]
  54. Fiorini S, Hajati F, Barla A, Girosi F. Predicting diabetes second-line therapy initiation in the Australian population via time span-guided neural attention network. Peng J, . Plos One. 2019 Oct 18; 14:(10):e0211844.
    [Google Scholar]
  55. Pesl P, Herrero P, Reddy M, Xenou M, Oliver N, Johnston D, et al.. An Advanced Bolus Calculator for Type 1 Diabetes: System Architecture and Usability Results. IEEE J Biomed Health Inform. 2016 Jan; 20:(1):11–7.
    [Google Scholar]
  56. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al.. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 2020 Sept; 26:(9):1380–4.
    [Google Scholar]
  57. Williams DD, Ferro D, Mullaney C, Skrabonja L, Barnes MS, Patton SR, et al.. An “All-Data-on-Hand” Deep Learning Model to Predict Hospitalization for Diabetic Ketoacidosis in Youth With Type 1 Diabetes: Development and Validation Study. JMIR Diabetes. 2023 July 18:8:e47592.
    [Google Scholar]
  58. Broome DT, Hilton CB, Mehta N. Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management. Curr Diab Rep. 2020 Feb 1; 20:(2):5.
    [Google Scholar]
  59. Abbes IB, Richard PY, Lefebvre MA, Guilhem I, Poirier JY. A Closed-Loop Artificial Pancreas Using a Proportional Integral Derivative with Double Phase Lead Controller Based on a New Nonlinear Model of Glucose Metabolism. J Diabetes Sci Technol. 2013 May 1; 7:(3):699–707.
    [Google Scholar]
  60. Aiello EM, Laffel LM, Patti ME, Doyle FJ. Ketone-Based Alert System for Insulin Pump Failures. J Diabetes Sci Technol. 2023 Nov 9;:19322968231209339.
    [Google Scholar]
  61. Nomura A, Noguchi M, Kometani M, Furukawa K, Yoneda T. Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep. 2021 Dec 13; 21:(12):61.
    [Google Scholar]
  62. Pham Q, Gamble A, Hearn J, Cafazzo JA. The Need for Ethnoracial Equity in Artificial Intelligence for Diabetes Management: Review and Recommendations. J Med Internet Res. 2021 Feb 10; 23:(2):e22320.
    [Google Scholar]
  63. Eid WM, Alharthi H, Aslam N, Abdur Rab IU, Madani A. Predicting diabetic ketoacidosis in pediatric patients using machine learning. F1000Research. 2023 June 6:12:611.
    [Google Scholar]
  64. Li L, Lee C, Zhou FL, Molony C, Doder Z, Zalmover E, et al.. Performance assessment of different machine learning approaches in predicting diabetic ketoacidosis in adults with type 1 diabetes using electronic health records data. Pharmacoepidemiol Drug Saf.2021 May; 30:(5):610–8.
    [Google Scholar]
  65. Obaido G, Ogbuokiri B, Chukwu CW, Osaye FJ, Egbelowo OF, Uzochukwu MI, et al.. An Improved Ensemble Method for Predicting Hyperchloremia in Adults With Diabetic Ketoacidosis. IEEE Access. 2024; 12:9536–49.
    [Google Scholar]
  66. Lebech Cichosz S, Bender C. Development of Machine Learning Models for the Identification of Elevated Ketone Bodies During Hyperglycemia in Patients with Type 1 Diabetes. Diabetes Technol Ther. 2024 June 1; 26:(6):403–10.
    [Google Scholar]
  67. Shi J, Chen F, Zheng K, Su T, Wang X, Wu J, et al.. Clinical nomogram prediction model to assess the risk of prolonged ICU length of stay in patients with diabetic ketoacidosis: a retrospective analysis based on the MIMIC-IV database. BMC Anesthesiol. 2024 Feb 29; 24:(1):86.
    [Google Scholar]
  68. Saraswati GW, Choo YH, Kumar YJ. Developing diabetes ketoacidosis prediction using ANFIS model. In: 2017 International Conference on Robotics, Automation and Sciences (ICORAS) [Internet]. Melaka: IEEE; 2017 [cited 2024 Aug 10]. p. 1–5. Available from: http://ieeexplore.ieee.org/document/8308066/
    [Google Scholar]
  69. Ibald-Mulli A, Seufert J, Grimsmann JM, Laimer M, Bramlage P, Civet A, et al.. Identification of predictive factors of diabetic ketoacidosis in type 1 diabetes using a subgroup discovery algorithm. Diabetes Obes Metab. 2023 July; 25:(7):1823–9.
    [Google Scholar]
  70. Hsu CC, Kao Y, Hsu CC, Chen CJ, Hsu SL, Liu TL, et al.. Using artificial intelligence to predict adverse outcomes in emergency department patients with hyperglycemic crises in real time. BMC Endocr Disord. 2023 Oct 24; 23:(1):234.
    [Google Scholar]
/content/journals/10.5339/avi.2025.16
Loading
/content/journals/10.5339/avi.2025.16
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): Artificial intelligencediabetic ketoacidosismachine learning and prediction models
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error