Full research graduate degree programmes in engineering and science are a unique set of coordinated scientific activities with definite starting and finishing points to meet specific performance objectives within defined schedule, cost and performance parameters. Often in graduate engineering programmes, little emphasis is placed on proper research management before and during execution. This leads to improper management and overshooting deadlines, culminating in unnecessary stress on budgets, resources and time. In this article, we present a case study application of critical path method (CPM) scheduling without resource constraints in planning and managing a typical graduate chemical engineering research project. The case study describes a full MSc research degree programme that considers the synthesis and performance evaluation of a carbon nanotube-polyaspartamide (CNT-PAA) composite material for carbon dioxide capture from coal-fired power plants. Based on the approved project proposal, the scheduled project duration for completion of the degree programme is 104 weeks. However, results of the application of CPM scheduling to the project show expected project duration of ninety-four (94) weeks, indicating a reduction of about 10%. In the presence of unexpected variability in the activity time of the activities in the critical path (CP) during the life cycle of the project, the programme evaluation and review technique (PERT) reveals that there is 85 percent chance of completing the degree programme on, or before, the scheduled project deadline.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error