The study of particle-laden coaxial, turbulent jets has been of interest due to its importance in several applications such as industrial burners, combustors and mixing devices. The addition of the second phase to the continuous phase jet can change the already complicated flow pattern and turbulent characteristics of the jets. Vast research efforts have been devoted to understanding such phenomena, but detailed investigation of particle-laden flows remains an active area of research.

The advent of laser diagnostics has helped to quantify the myriad details of the turbulent jet flow fields in great detail. However, the diagnostic tools are very expensive to use as a research tool. As a result, computational fluid dynamics (CFD) with an acceptable level of accuracy can complement the experimental results by providing additional details that are difficult to measure.

Nevertheless, even with the advancement of computational resources, modeling the turbulent characteristics remains a challenge due to its complex nature. Although recently, computational techniques have been developed to “solve” the turbulent quantities, these techniques are computationally too expensive to use in real time applications.

Hence, in this work, standard Reynolds-averaged Navier-Stokes, numerical simulations are carried out to predict the flow and turbulent characteristics of coaxial jets with and without the dispersed phase. The results are compared with the experimental data measured using molecular tagging velocimetry diagnostic technique. The key objective of this work is to investigate the flow field details that are difficult, if not impossible, to measure.


Article metrics loading...

Loading full text...

Full text loading...


  1. K. Kannaiyan, Numerical simulation of particle-laden coaxial turbulent jets, QFARF Proceedings, 2010, CSP3.
    [Google Scholar]
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error