1887

Abstract

Desalination is probably the only means for fresh water supply to countries in decertified climate. The majority of GCC counties rely on desalinated water for fresh water supply to major cities. Over 70% of the desalinated water in the GCC comes from thermal desalination plants including Multi Stage Flash (MSF) and Multi Effect Distillation (MED). The new trend in the desalination plant in the GCC is 30% Reverse Osmosis (RO) and 70% thermal. However, these percentages vary from one to another country depending on feed water quality and expertise. For example, Oman Sea has lower salinity than the Gulf water and hence Oman uses more RO for desalination than MED and MSF. This decision is also driven by economy as RO process less energy intensive and hence the produced water is less expensive as compared to thermal plants. On the contrary, Qatar and Kuwait use more MSF followed by MED due to the high salinity and low quality feed water. This is also because trials of RO in both Qatar and Kuwait were not successful because of the problems of membrane fouling and restrict pre-treatment requirements due to the quality of the water intake.

The advantages of RO over thermal technologies are well known in terms of lower energy consumption and the cost of produced water; but are not yet taken advantage of in the GCC zone. One of the reasons is blamed on high feed water salinity and bad water quality; other reasons such as lack of experience, red tides and reliability are contributed to the dominance of thermal plants. However, field experience showed that good pretreatment and optimized RO design may overcome the problems of high feed salinity and bad water quality. Several RO plants, such as Fujairah in UAE, are good examples of a working RO technology in the harsh water environment. Good RO design includes design and optimization of both pretreatment and post-treatment. Field experience showed that most of RO plants failure was due to inefficient pretreatment which resulted in providing low quality water to the RO membrane that caused fouling. Fouling, including biological and scaling, can be handled once an efficient pretreatment process is available. Recent advances in pre-treatment techniques include the combination of Forward Osmosis (FO) with RO among other methods. Recent studies by the authors including commercial implantations have shown that the combination of FO with RO addresses the most technical challenge of RO process and that is fouling, which results in lower energy consumption and less chemical additives. Experience showed fouling in FO process in reversible, i.e. can be removed by backlashing while fouling in conventional RO process is irreversible.

In this study, the feasibility of integrating FO with RO process for the desalting of the Gulf water in Qatar is presented. The results are expressed in terms of specific energy consumption, process recovery, produced water quality, chemical additives and overall process cost.

The implementation of RO for desalination is not only reducing the cost of desalination but also the environmental impact. More R&D should be done to provide useful data about RO application and suitability for the Gulf water. The R&D should be focused on laboratory to market development of RO technology using rigorous lab scale and pilot plant testing program.

Loading

Article metrics loading...

/content/papers/10.5339/qfarc.2016.EEPP2725
2016-03-21
2019-10-20
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/papers/10.5339/qfarc.2016.EEPP2725
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error