1887
Volume 2021, Issue 1
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

As the importance of the gut microbiota in health and disease is a subject of growing interest, fecal microbiota transplantation (FMT) was suggested as an attractive therapeutic strategy to restore homeostasis of the gut microbiota, thereby treating diseases that were associated with alteration of the gut microbiota. FMT involves the administration of fresh, frozen, or dried fecal microorganisms from the gut of a healthy donor into the intestinal tract of a patient. This rediscovery of the potential benefits of an ancient practice was accompanied by a rapid progression of our understanding of the roles and mechanisms of gut microbes in the pathogenesis of disease. With a growing number of diseases being associated with dysbiosis or the alteration of gut microbiota, FMT was suggested as an attractive therapeutic strategy to “reset the gut” and initiate clinical resolutions or remissions. The number of FMT clinical trials is increasing worldwide, but no trials are registered in the Gulf region; this suggested the need for raising awareness of the latest studies on FMT. This review presented the emergent preclinical and clinical data to give an overview of the potential clinical applications, the benefits, and inconveniences that were worth considering for eventual future testing of fecal transplants in Qatar and the Middle East. This study highlighted the diversity of methods tested and commented on the variables that can affect the assessment of the effectiveness of FMT in specific diseases. The risks associated with FMT and the threat of antimicrobial resistance for this therapeutic approach were reviewed. From gastrointestinal diseases to neurodevelopmental disorders, understanding the roles of the gut microbiota in health and disease should be at the heart of developing novel, standardized, yet personalized, methods for this ancient therapeutic approach.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2021.5
2021-02-22
2021-04-17
Loading full text...

Full text loading...

/deliver/fulltext/qmj/2021/1/qmj.2021.5.html?itemId=/content/journals/10.5339/qmj.2021.5&mimeType=html&fmt=ahah

References

  1. Gareau MG. Cognitive Function and the Microbiome. Int Rev Neurobiol [Internet]. 2016 [cited 2017 Mar 13];131:227–46. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0074774216301349.
    [Google Scholar]
  2. Mayer EA, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci [Internet]. 2014 Nov 12 [cited 2017 Mar 13]; 34:(46):15490–6. Available from: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3299-14.2014.
    [Google Scholar]
  3. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun [Internet]. 2017 Dec 10 [cited 2019 Nov 26]; 8:(1):845. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29018189.
    [Google Scholar]
  4. Tsai Y-L, Lin T-L, Chang C-J, Wu T-R, Lai W-F, Lu C-C, et al. Probiotics, prebiotics and amelioration of diseases. J Biomed Sci. 2019 Dec; 26:(1):3.
    [Google Scholar]
  5. Kho ZY, Lal SK. The Human Gut Microbiome–A Potential Controller of Wellness and Disease. Front Microbiol [Internet]. 2018 Aug 14 [cited 2019 Nov 27];9:1835. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30154767.
    [Google Scholar]
  6. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li H Bin. Impacts of gut bacteria on human health and diseases. Int J Mol Sci. 2015; 16:(4):7493–519.
    [Google Scholar]
  7. Ghaisas S, Maher J, Kanthasamy A. Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther [Internet]. 2016 Feb [cited 2017 Mar 13];(158):52–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0163725815002259.
    [Google Scholar]
  8. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome [Internet]. 2017 Jan 23 [cited 2017 Mar 13]; 5:(1):10. Available from: http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-016-0225-7.
    [Google Scholar]
  9. Ming X, Stein TP, Barnes V, Rhodes N, Guo L. Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res. 2012 Dec 7; 11:(12):5856–62.
    [Google Scholar]
  10. Coprophagy in animals: a review - PubMed [Internet]. [cited 2020 May 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/1954740/.
  11. Aviles-Rosa EO,Rakhshandeh A, McGlone JJ. Preliminary study: depriving piglets of maternal feces for the first seven days post-partum changes piglet physiology and performance before and after weaning. Animals. 2019 May 1 9;:(5).
    [Google Scholar]
  12. Bogatyrev SR, Rolando JC, Ismagilov RF. Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome. 2020 Feb 12;8:(1):1–22.
    [Google Scholar]
  13. Sutherland WD. Charaka Samhita. Indian Medical Gazette.
    [Google Scholar]
  14. de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Vol. 8:, Gut Microbes. Taylor and Francis Inc.; 2017. p. 253–67.
    [Google Scholar]
  15. Lewin RA. More on merde. Vol. 44, Perspectives in biology and medicine. Perspect Biol Med; 2001. p. 594–607.
    [Google Scholar]
  16. Eisemen B., Silen W., BAscom GS., Kauvar AJ. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis - Surgery. 1958, Nov; 44:(5):854-9. PMID: 13592638.
    [Google Scholar]
  17. Lemon KP, Armitage GC, Relman DA, Fischbach MA. Microbiota-targeted therapies: an ecological perspective [Internet]. Vol. 4, Science Translational Medicine. NIH Public Access; 2012 [cited 2020 Jun 27]. p. 137rv5. Available from: /pmc/articles/PMC5725196/?report = abstract.
  18. Fda, Cber. Enforcement policy regarding investigational new drug requirements for use of fecal microbiota for transplantation to treat Clostridium difficile infection not responsive to standard therapies – Draft Guidance for Industry [Internet]. [cited 2018 Nov 8]. Available from:http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida.
  19. Hey FDA, Poop Is not a drug - Scientific American Blog Network [Internet]. [cited 2020 May 14]. Available from: https://blogs.scientificamerican.com/observations/hey-fda-poop-is-not-a-drug/.
  20. Quraishi MN, Widlak M, Bhala N, Moore D, Price M, Sharma N, et al.Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection [Internet]. Vol. 46, Alimentary Pharmacology and Therapeutics. Blackwell Publishing Ltd; 2017 [cited 2020 Jun 24]. p. 479–93. Available from: https://www.onlinelibrary.wiley.com/doi/full/10.1111/apt.14201.
  21. Althani AA, Marei HE, Hamdi WS, Nasrallah GK, El Zowalaty ME, Al Khodor S, et al. Human microbiome and its association with health and diseases. J Cell Physiol [Internet]. 2016 Aug [cited 2017 Mar 13]; 231:(8):1688–94. Available from: http://doi.wiley.com/10.1002/jcp.25284.
    [Google Scholar]
  22. Wilkins LJ, Monga M, Miller AW. Defining dysbiosis for a cluster of chronic diseases. Sci Rep [Internet]. 2019 Dec 9 [cited 2019 Nov 26]; 9:(1):12918. Available from: http://www.nature.com/articles/s41598-019-49452-y.
    [Google Scholar]
  23. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Kling Bäckhed H, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell [Internet]. 2012 Aug 3 [cited 2019 Nov 28]; 150:(3):470–80. Available from: https://www.sciencedirect.com/science/article/pii/S009286741200829X.
    [Google Scholar]
  24. Takiishi T, Korf H, Van Belle TL, Robert S, Grieco FA, Caluwaerts S, et al. Reversal of autoimmune diabetes by restoration of antigen-specific tolerance using genetically modified Lactococcus lactis in mice. J Clin Invest. 2012 May; 122:(5):1717–25.
    [Google Scholar]
  25. Chen Z, Guo L, Zhang Y, Walzem RL, Pendergast JS, Printz RL, et al. Incorporation of therapeutically modified bacteria into Gut microbiota inhibits obesity. J Clin Invest. 2014; 124:(8):3391–406.
    [Google Scholar]
  26. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell [Internet]. 2016 Jun 16 [cited 2017 Mar 13]; 165:(7):1762–75. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867416307309.
    [Google Scholar]
  27. Kiraly DD, Walker DM, Calipari ES, Labonte B, Issler O, Pena CJ, et al. Alterations of the host microbiome affect behavioral responses to cocaine. Sci Rep [Internet]. 2016 Oct 18 [cited 2017 Mar 13]; 6:(1):35455. Available from: http://www.nature.com/articles/srep35455.
    [Google Scholar]
  28. Bravo JA, Forsythe P, Chew M V, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011; 108:(38):16050–5.
    [Google Scholar]
  29. Search of fecal transplant - List Results - ClinicalTrials.gov [Internet]. [cited 2020 Jun 26]. Available from: https://clinicaltrials.gov/ct2/results?cond=fecal+transplant&term=&cntry=&state=&city=&dist=.
  30. Al-Thani AA, Hamdi WS, Al-Ansari NA, Doiphode SH. Polymerase chain reaction ribotyping of Clostridium difficile isolates in Qatar: a hospital-based study. BMC Infect Dis. 2014 Sep 15;14(1):.
    [Google Scholar]
  31. Butt MT, Bener A, Al-Kaabi S, Yakoub R. Clinical characteristics of Crohn s disease in Qatar. Saudi Med J. 2005 Nov; 26:(11):1796-9. PMID: 16311668.
    [Google Scholar]
  32. Bendriss G, Esmandar Z. Case Report: A unique case of a retroperitoneal abscess during pregnancy complicated with an ileo-sigmoid-vesical fistula in a patient with active Crohn's disease. F1000Research [Internet]. 2020 May 12 [cited 2020 May 17];(9):350. Available from: https://f1000research.com/articles/9-350/v1.
    [Google Scholar]
  33. Hammoudeh M, Elsayed E, Al-Kaabi S, Sharma M, Elbadri M, Chandra P, et al. Rheumatic manifestations of inflammatory bowel diseases: A study from the Middle East. J Int Med Res. 2018 Sep 1; 46:(9):3837–47.
    [Google Scholar]
  34. Information About Education, Economy, Health, IT and Tourism in Qatar [Internet]. [cited 2020 Jun 26]. Available from: https://portal.www.gov.qa/wps/portal/topics/Health/diabetes.
  35. Al-Thani M, Al-Thani A, Alyafei S, Al-Chetachi W, Khalifa SE, Ahmed A, et al. The prevalence and characteristics of overweight and obesity among students in Qatar. Public Health [Internet]. 2018 Jul 1 [cited 2020 Jun 26];160:143–9. Available from: https://pubmed.ncbi.nlm.nih.gov/29704956/.
    [Google Scholar]
  36. Alshaban F, Aldosari M, Al-Shammari H, El-Hag S, Ghazal I, Tolefat M et al. Prevalence and correlates of autism spectrum disorder in Qatar: a national study. J Child Psychol Psychiatry Allied Discip. 2019 Dec 1; 60:(12):1254–68.
    [Google Scholar]
  37. Making health care safer: stopping C. difficile infections.
  38. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile Infection in the United States. N Engl J Med [Internet]. 2015 Feb 26 [cited 2020 May 14]; 372:(9):825–34. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1408913.
    [Google Scholar]
  39. Khoruts A. Fecal microbiota transplantation–early steps on a long journey ahead. Vol. 8, Gut Microbes. Taylor and Francis Inc.; 2017. p. 199–204.
  40. Wortelboer K, Nieuwdorp M, Herrema H. Fecal microbiota transplantation beyond Clostridioides difficile infections. Vol. 44, EBioMedicine. Elsevier B.V.; 2019. p. 716–29.
  41. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology. 2015 Jul 1; 149:(1):102-109.e6.
    [Google Scholar]
  42. Tang L li, Feng W zhe, Cheng J jun, Gong Y ni. Clinical remission of ulcerative colitis after different modes of faecal microbiota transplantation: a meta-analysis [Internet]. Vol. 35, International Journal of Colorectal Disease. Springer; 2020 [cited 2020 Jun 24]. p. 1025–34. Available from: https://pubmed.ncbi.nlm.nih.gov/32388604/.
    [Google Scholar]
  43. Zhou HY, Guo B, Lufumpa E, Li XM, Chen LH, Meng X, et al. Comparative of the effectiveness and safety of biological agents, tofacitinib, and fecal microbiota transplantation in ulcerative colitis: systematic review and network meta-analysis. Immunol Invest [Internet]. 2020 [cited 2020 Jun 24]; Available from: https://www.tandfonline.com/doi/abs/10.1080/08820139.2020.1714650.
    [Google Scholar]
  44. Wang H, Lu Y, Yan Y, Tian S, Zheng D, Leng D, et al. Promising treatment for type 2 diabetes: fecal microbiota transplantation reverses insulin resistance and impaired islets. Front Cell Infect Microbiol. 2020 Jan 17;9.
    [Google Scholar]
  45. Sun L, Ma L, Ma Y, Zhang F, Zhao C, Nie Y. Insights into the role of gut microbiota in obesity: pathogenesis, mechanisms, and therapeutic perspectives. Vol. 9, Protein and Cell. Higher Education Press; 2018. p. 397–403.
  46. Fattorusso A, Di Genova L, Dell'isola GB, Mencaroni E, Esposito S. Autism spectrum disorders and the gut microbiota. Nutrients. 2019;11(3).
    [Google Scholar]
  47. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome. 2017;5(1).
    [Google Scholar]
  48. Kachrimanidou M, Tsintarakis E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms [Internet]. 2020 Jan 31 [cited 2020 May 14]; 8:(2):200. Available from: https://www.mdpi.com/2076-2607/8/2/200.
    [Google Scholar]
  49. Rokkas T, Gisbert JP, Gasbarrini A, Hold GL, Tilg H, Malfertheiner P, et al. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. United Eur Gastroenterol J [Internet]. 2019 Oct 1 [cited 2020 Jun 24]; 7:(8):1051–63. Available from: https://pubmed.ncbi.nlm.nih.gov/31662862/.
    [Google Scholar]
  50. Thanissery R, Winston JA, Theriot CM. Inhibition of spore germination, growth, and toxin activity of clinically relevant C. difficile strains by gut microbiota derived secondary bile acids. Anaerobe. 2017 Jun 1;(45):86–100.
    [Google Scholar]
  51. Francis MB, Allen CA, Shrestha R, Sorg JA. Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog. 2013 May;9(5).
    [Google Scholar]
  52. Baktash A, Terveer EM, Zwittink RD, Hornung BVH, Corver J, Kuijper EJ, et al. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections. Vol. 9, Frontiers in Microbiology. Frontiers Media S.A.; 2018.
    [Google Scholar]
  53. Goloshchapov O V., Olekhnovich EI, Sidorenko S V., Moiseev IS, Kucher MA, Fedorov DE, et al. Long-term impact of fecal transplantation in healthy volunteers. BMC Microbiol [Internet]. 2019 Dec 30 [cited 2020 Jun 24]; 19:(1):312. Available from: https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-019-1689-y.
    [Google Scholar]
  54. Kumar R, Yi N, Zhi D, Eipers P, Goldsmith KT, Dixon P, et al. Identification of donor microbe species that colonize and persist long term in the recipient after fecal transplant for recurrent Clostridium difficile. npj Biofilms Microbiomes [Internet]. 2017 Dec 1 [cited 2020 Jun 24]; 3:(1):1–4. Available from: https://www.nature.com/articles/s41522-017-0020-7.
    [Google Scholar]
  55. Kang D-W, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-Means S et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep [Internet]. 2019; 9:(1):5821. Available from: https://doi.org/10.1038/s41598-019-42183-0.
    [Google Scholar]
  56. Xia G-H, You C, Gao X-X, Zeng X-L, Zhu J-J, Xu K-Y, et al. Stroke dysbiosis index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol [Internet]. 2019 Apr 24 [cited 2020 Jun 26];10(APR):397. Available from: https://www.frontiersin.org/article/10.3389/fneur.2019.00397/full.
    [Google Scholar]
  57. Leshem A, Horesh N, Elinav E. Fecal microbial transplantation and its potential application in cardiometabolic syndrome. Vol. 10, Frontiers in Immunology. Frontiers Media S.A.; 2019. p. 1341.
    [Google Scholar]
  58. Taheri S, Zaghloul H, Chagoury O, Elhadad S, Ahmed SH, El Khatib N, et al. fEfect of intensive lifestyle intervention on bodyweight and glycaemia in early type 2 diabetes (DIADEM-I): an open-label, parallel-group, randomised controlled trial. Lancet Diabetes Endocrinol. 2020 Jun 1; 8:(6):477–89.
    [Google Scholar]
  59. Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, de Vos WM, et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes Metab. 2012; 14:(2):112–20.
    [Google Scholar]
  60. Myles IA. Fast food fever: Reviewing the impacts of the western diet on immunity. Nutr J. 2014;13(1).
    [Google Scholar]
  61. McLeod C, Nerlich B, Jaspal R. Fecal microbiota transplants: emerging social representations in the English-language print media. New Genet Soc [Internet]. 2019 Jul 3 [cited 2020 Jun 24]; 38:(3):331–51. Available from: https://www.tandfonline.com/doi/full/10.1080/14636778.2019.1637721.
    [Google Scholar]
  62. Ramai D, Zakhia K, Fields PJ, Ofosu A, Patel G, Shahnazarian V, et al. Fecal microbiota transplantation (FMT) with colonoscopy is superior to enema and nasogastric tube while comparable to capsule for the treatment of recurrent Clostridioides difficile infection: a systematic review and meta-analysis [Internet]. Digestive Diseases and Sciences. Springer; 2020 [cited 2020 Jun 24]. Available from: https://pubmed.ncbi.nlm.nih.gov/32166622/.
    [Google Scholar]
  63. Zhang Z, Mocanu V, Cai C, Dang J, Slater L, Deehan EC, et al. Impact of fecal microbiota transplantation on obesity and metabolic syndrome- a systematic review [Internet]. Vol. 11, Nutrients. MDPI AG; 2019 [cited 2020 Jun 24]. Available from: /pmc/articles/PMC6835402/?report = abstract.
    [Google Scholar]
  64. Myneedu K, Deoker A, Schmulson MJ, Bashashati M. Fecal microbiota transplantation in irritable bowel syndrome: A systematic review and meta-analysis [Internet]. Vol. 7, United European Gastroenterology Journal. SAGE Publications Ltd; 2019 [cited 2020 Jun 24]. p. 1033–41. Available from: https://pubmed.ncbi.nlm.nih.gov/31662860/.
    [Google Scholar]
  65. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C, Afzali A, et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am J Gastroenterol [Internet]. 2014 Jul [cited 2019 Nov 27]; 109:(7):1065–71. Available from: http://insights.ovid.com/crossref?an = 00000434-201407000-00022.
    [Google Scholar]
  66. Important safety alert regarding use of fecal microbiota for transplantation and risk of serious adverse reactions due to transmission of multi-drug resistant organisms | FDA [Internet]. [cited 2020 May 14]. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/important-safety-alert-regarding-use-fecal-microbiota-transplantation-and-risk-serious-adverse.
  67. FDA in brief: FDA warns about potential risk of serious infections caused by multi-drug resistant organisms related to the investigational use of fecal microbiota for transplantation | FDA [Internet]. [cited 2020 May 14]. Available from: https://www.fda.gov/news-events/fda-brief/fda-brief-fda-warns-about-potential-risk-serious-infections-caused-multi-drug-resistant-organisms.
  68. Martínez JL, Baquero F. Emergence and spread of antibiotic resistance: setting a parameter space. Vol. 119, Upsala Journal of Medical Sciences. Informa Healthcare; 2014. p. 68–77.
    [Google Scholar]
  69. Ianiro G, Masucci L, Quaranta G, Simonelli C, Lopetuso LR, Sanguinetti M, et al. Randomised clinical trial: faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions. Aliment Pharmacol Ther [Internet]. 2018 Jul 1 [cited 2020 May 16]; 48:(2):152–9. Available from: http://doi.wiley.com/10.1111/apt.14816.
    [Google Scholar]
  70. Mcgovern BH, Wilcox MH, Mcgovern BH, Hecht GA. The Efficacy and Safety of Fecal Microbiota Transplant for Recurrent Clostridium difficile Infection: Current Understanding and Gap Analysis. Open Forum Infectious Diseases. [cited 2020 Jun 24]; Available from: https://academic.oup.com/ofid/article-abstract/7/5/ofaa114/5818982.
    [Google Scholar]
  71. Youngster I, Russell GH, Pindar C, Ziv-Baran T, Sauk J, Hohmann EL. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA - J Am Med Assoc. 2014 Nov 5; 312:(17):1772–8.
    [Google Scholar]
  72. Lee CH, Steiner T, Petrof EO, Smieja M, Roscoe D, Nematallah A, et al. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent clostridium difficile infection a randomized clinical trial. JAMA - J Am Med Assoc. 2016 Jan 12; 315:(2):142–9.
    [Google Scholar]
  73. Hvas CL, Dahl Jørgensen SM, Jørgensen SP, Storgaard M, Lemming L, Hansen MM, et al. Fecal microbiota transplantation Is superior to fidaxomicin for treatment of recurrent Clostridium difficile Infection. Gastroenterology. 2019 Apr 1; 156:(5):1324-1332.e3.
    [Google Scholar]
  74. Camacho-Ortiz A, Gutiérrez-Delgado EM, Garcia-Mazcorro JF, Mendoza-Olazarán S,Martínez-Meléndez A, Palau-Davila L, et al. Randomized clinical trial to evaluate the effect of fecal microbiota transplant for initial clostridium difficile infection in intestinal microbiome. PLoS One. 2017 Dec 1;12(12).
    [Google Scholar]
  75. Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017 Mar 25; 389:(10075):1218–28.
    [Google Scholar]
  76. Jacob V, Crawford C, Cohen-Mekelburg S, Viladomiu M, Putzel GG, Schneider Y, et al. Single delivery of high-diversity fecal microbiota preparation by colonoscopy is safe and effective in increasing microbial diversity in active ulcerative colitis. Inflamm Bowel Dis. 2017 Jun 1; 23:(6):903–11.
    [Google Scholar]
  77. Ding X, Li Q, Li P, Zhang T, Cui B, Ji G, et al. Long-Term Safety and Efficacy of fecal microbiota transplant in active ulcerative colitis. Drug Saf. 2019 Jul 1; 42:(7):869–80.
    [Google Scholar]
  78. Sokol H, Landman C, Seksik P, Berard L, Montil M, Nion-Larmurier I, et al. Fecal microbiota transplantation to maintain remission in Crohn's disease: a pilot randomized controlled study. Microbiome. 2020 Feb 3; 8:(1):12.
    [Google Scholar]
  79. Kump PK, Gröchenig H-P, Lackner S, Trajanoski S, Reicht G, Hoffmann KM, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis [Internet]. 2013 Sep 1 [cited 2020 May 16]; 19:(10):2155–65. Available from: https://academic.oup.com/ibdjournal/article/19/10/2155-2165/4603021.
    [Google Scholar]
  80. Rossen NG, Fuentes S, Van Der Spek MJ, Tijssen JG, Hartman JHA, Duflou A, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015 Jul 1; 149:(1):110-118.e4.
    [Google Scholar]
  81. Wang H, Cui B, Li Q, Ding X, Li P, Zhang T, et al. The safety of fecal microbiota transplantation for Crohn's Disease: findings from A long-term study. Adv Ther. 2018 Nov 1; 35:(11):1935–44.
    [Google Scholar]
  82. He Z, Li P, Zhu J, Cui B, Xu L, Xiang J, et al. Multiple fresh fecal microbiota transplants induces and maintains clinical remission in Crohn's disease complicated with inflammatory mass. Sci Rep. 2017 Dec 1;7(1).
    [Google Scholar]
  83. Suskind DL, Brittnacher MJ, Wahbeh G, Shaffer ML, Hayden HS, Qin X, et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active Crohn’s Disease. Inflamm Bowel Dis [Internet]. 2015 Mar [cited 2018 Nov 8]; 21:(3):556–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25647155.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2021.5
Loading
/content/journals/10.5339/qmj.2021.5
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): antibiotic resistance , clinical trial , Clostridium difficile , Fecal transplant , microbiota and Qatar
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error