1887
Volume 2005, Issue 1
  • ISSN: 0253-8253
  • EISSN: 2227-0426

Abstract

To study the antimicrobial resistance pattern of aerobic Gram-negative bacilli isolated from patients in intensive care units in Hamad Medical Corporation, 108 non-duplicate isolates from 60 patients with nosocomial infections were determined by Vitek machine. The minimal inhibitory concentration of 14 antimicrobials was determined by E-test and results were interpreted according to the National Committee for Clinical Laboratory Standards guidelines. The most common species was Pseudomonas aeruginosa High levels of resistance were seen to second and third generation cephalosporins, piperacillin, fi-lactam Ji-lactamase inhibitors combinations, and gentamicin. The most active agents were amikacin, meropenem and imipenem (resistance 19%, 19%, 20% respectively). We conclude that second and third generation cephalosporins, piperacillin, fi-lactam/fi-lactamase inhibitors combinations and gentamicin are not suitable drugs for empirical monotherapy for aerobic Gram-negative infections in intensive care units in Qatar.

Loading

Article metrics loading...

/content/journals/10.5339/qmj.2005.1.13
2005-06-01
2024-03-28
Loading full text...

Full text loading...

References

  1. Rahal JJ. Extended-spectrum fi-lactamases: How big is the problem. CMI. 2000; 6:suppl. 2:26.
    [Google Scholar]
  2. McGown JE. Antimicrobial resistance in hospital organisms and its relation to antimicrobial agent use. Rev Infect Dis. 1983; 5::10331048.
    [Google Scholar]
  3. Flaherty JP, Weinstein RA. Nosocomial infection caused by antibiotic-resistant organisms in the intensive care units. Infect Control Hosp Epidemiol. 1966; 17::236248.
    [Google Scholar]
  4. Hanberger H, Diekema D, Fluit A, Jones R, Struelens M, Spencer R, Wolff M. Surveillence of antibiotic resistance in European ICUS. J Hosp Infect;. 2001; 48::161176.
    [Google Scholar]
  5. Hunter PA, Reeves DS. The current status of surveillance of resistance to antimicrobial agents. J Antimicrob Chemother. 2002; 49::1723.
    [Google Scholar]
  6. Huovinen P, cars O. Control of antimicrobial resistance: Time for action. BMI. 1998; 317::613614.
    [Google Scholar]
  7. Chow J, Fine M, Shales DM, et al., Enterobacter bacteremia: Clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991; 115::585590.
    [Google Scholar]
  8. Rello R, Ausina V, Ricat M, Castella I, Parts G. Impact of previous antimicrobial therapy on the etiology and outcome of ventilator associated pneumonia. Chest. 1993; 104::12301235.
    [Google Scholar]
  9. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: Comparison of risks associated with different antipseudomonal agents. Antimicrobial Agents Chemother. 1999; 43::13791382.
    [Google Scholar]
  10. Pechere JC, Kohler T. Patterns and modes of beta-lactama resistance in Pseudomonas aerugenisoa. Clin Microbiol Infect. 1999; 5::S15S18.
    [Google Scholar]
  11. Hanberger H, Garcia-Rodriguez JA, Gobernado M, Goossens H, Nilsson LE, Struelens MJ. Antibiotic susceptibility among aerobic Gram-negative bacilli in intensive care units. JAMA. 1999; 281::6771.
    [Google Scholar]
  12. Archibald L, Phillips L, Monnet D, McGowan JE, Tenover F, Gaynes R. Antimicrobial resistance in isolates from inpatients and outpatients in the United States: increasing importance of the intensive care unit. Clin Infect Dis. 1997; 24::211215.
    [Google Scholar]
  13. Spencer RC. The emergence of epidemic, multiple-antibioticresistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. J Hosp Infect. 1995; 30: Suppl:S453S464.
    [Google Scholar]
  14. Villarino Me, Steveus LE, Schable B, et al., Risk factors for epidemic Xanthomonas maltophilia: a case-control study of predisposing factors. Infect Control Hosp Epidemiol. 1990; 11::134138.
    [Google Scholar]
  15. Livermore DM. Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev. 1995; 8::557584.
    [Google Scholar]
  16. Lortholary O, Fagon JY, Hoi AB, et al., Nosocomial acquisition of multiresistant Acinetobacter baumannii: risk factors and prognosis. Clin Infect Dis. 1995; 20::790796.
    [Google Scholar]
  17. Jawad A, Seifert H, Snelling AM, Heritage J, Hawkey PM. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J Clin Microbiol. 1998; 7::19381941.
    [Google Scholar]
  18. Dy ME, Nord JA, La Bombardi VJ, Kislak JW. The emergence of resistant strains of Acinetobacter baumannii: clinical and infection control implications. Infection control Hosp Epidemiol. 1999; 20::565567.
    [Google Scholar]
  19. Radberg G, Nels son L, Swensson S. Development of quinoloneimipnem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin. Antimicrobial Agent Chemother. 1990; 34::21422147.
    [Google Scholar]
  20. Fung-Tome J, Kolek B, Bonner D. Ciprofloxacin-induced low level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob Agent Chemother. 1993; 37::12891298.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/qmj.2005.1.13
Loading
  • Article Type: Research Article
Keyword(s): bacterial resistancegram negative bacteria and Intensive care units
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error