1887
Volume 2025, Issue 1
  • EISSN: 3008-0738

Abstract

, a leading cause of bacillary dysentery, induces severe gastrointestinal inflammation, disrupting gut homeostasis. This study evaluates the potential of as probiotics to enhance immune responses in Wistar albino rats against infection.

Twenty healthy Wistar rats were divided into five groups: Control (group A), group B (-infected), group C (-treated), group D (pre-treated with before infected with ), and group E (infected with and treated with ciprofloxacin). Temperature, body weight, and stool samples were collected at 0, 7, 14, and 21 days. At the end of the experiment (21 days), blood samples and organs (liver and colon) were examined microbiologically and pathologically following standard methods.

The temperature at 0 days was observed to be 36°C in all the groups, by day 21, there was an increase in temperature in all the groups except the control group. There was no statistical difference in temperature among the groups ( > 0.05). The weight of the experimental animals on day 0 ranged from 180 to 200 g. It was observed that on day 7, there was a decrease in the body weight of the Wistar albino rats in group B (173 g), group D (173.3 g), and group E (159 g), but there was a weight gain of 224.3 g in group C at the end of 21 days ( > 0.05). There was statistical significance ( = 0.03) among all the groups in terms of the mean corpuscular volume (MCV) parameter, even though, group E had the lowest MCV of 58.7 ± 8.00 fL. Also, there was a significant difference in white blood cells (WBCs) and lymphocytes among all groups ( < 0.05). The mean of heterotrophic bacteria count of Wistar albino rats on day 21 showed that group A had the least mean bacteria count of 11.7 × 107 cfm/mL, and the highest occurrence was in group E (16.6 × 107 cfm/mL). The mean heterotrophic bacteria load ranged between 47 × 103 – 78.6 × 103 cfu/g and 39 × 103 – 82 × 103 cfu/g for the colon and liver respectively.

The findings indicate that not only demonstrates antagonistic properties against pathogenic bacteria but also positively affects hematological parameters that reflect an enhanced immune response. I recommend that further research be conducted to explore the long-term effects of supplementation on immune function and gut microbiota.

Loading

Article metrics loading...

/content/journals/10.5339/qjph.2025.6
2025-05-26
2025-07-17
Loading full text...

Full text loading...

/deliver/fulltext/qjph/2025/1/qjph.2025.6.html?itemId=/content/journals/10.5339/qjph.2025.6&mimeType=html&fmt=ahah

References

  1. Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, et al. Human gut microbiota in health and disease: unveiling the relationship. Front Microbiol. 2022; 26:13:999001. https://doi.org/10.3389/fmicb.2022.999001
    [Google Scholar]
  2. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP. The Lactobacillus casei group: history and health related applications. Front Microbiol. 2018; 10:9:2107. https://doi.org/10.3389/fmicb.2018.02107
    [Google Scholar]
  3. Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells. 2023; 12:(1):184. https://doi.org/10.3390/cells12010184
    [Google Scholar]
  4. Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011; 27:496–501. https://doi.org/10.1097/MOG.0b013e32834baa4d
    [Google Scholar]
  5. Serek P, Oleksy-Wawrzyniak M. The effect of bacterial infections, probiotics and zonulin on intestinal barrier integrity. Int J Mol Sci. 2021; 22:11359. https://doi.org/10.3390/ijms222111359
    [Google Scholar]
  6. Van Niel CW, Feudtner C, Garrison MM, Christakis DA. Lactobacillus therapy for acute infectious diarrhea in children: a meta-analysis. Pediatrics. 2022; 109:(4):. 678–84. https://doi.org/10.1542/peds.109.4.678
    [Google Scholar]
  7. Ibejekwe AN, Egbere JO, Dashen MM, Ngene AC, Akpagher SF, Adetunji JA, et al. Preliminary investigations on the therapeutic efficacy and safety of mixed probiotic lactic acid bacteria on albino rats challenged with Shigella dysenteriae. Adv Gut Microb Res. 2023;1–10. https://doi.org/org/10.1155/2023/1917108
    [Google Scholar]
  8. Li M, Wang Y, Cui H, Li Y, Sun Y, Qiu HJ. Characterization of lactic acid bacteria isolated from the gastrointestinal tract of a wild boar as potential probiotics. Front Veter Sci. 2020; 7:49. https://doi.org/10.3389/fvets.2020.00049
    [Google Scholar]
  9. Amengialue O, Igiebor F, Ehiaghe J, Egharevba P, Omoregie B, Ologbosere M, et al. Heamatological, biochemical and histological responses of infected Rattus albus (albino wister rats) fed with probiotics (Lactobacillus sp.). Afr J Health Saf Environ. 2023; 4:(1):. 34–44. https://doi.org/10.52417/ajhse.v4i1.294
    [Google Scholar]
  10. Pan K. The effects of feeding type on the gut microbiota of neonates and early infants. J Infect Dis Case Rep. 2022:1–5. https://doi.org/10.47363/JIDSCR/2022(3)159
    [Google Scholar]
  11. Jara S, Sánchez M, Vera R, Cofré J, Castro E. The inhibitory activity of Lactobacillus spp. isolated from breast milk on gastrointestinal pathogenic bacteria of nosocomial origin. Anaerobe. 2011; 17:(6):. 474–7. https://doi.org/10.1016/j.anaerobe.2011.07.008
    [Google Scholar]
  12. Olivares M, Díaz-Ropero MP, Martín R, Rodríguez JM, Xaus J. Antimicrobial potential of four Lactobacillus strains isolated from breast milk. J Appl Microbiol. 2006; 101:(1):. 72–9. https://doi.org/10.1111/j.1365-2672.2006.02981.x
    [Google Scholar]
  13. Kim SY, Shin JS, Chung KS, Han HS, Lee HH, Lee JH, et al. Immunostimulatory effects of live Lactobacillus sakei K040706 on the CYP-induced immunosuppression mouse model. Nutrients. 2020;22; 12:(11):3573. https://doi.org/10.3390/nu12113573
    [Google Scholar]
  14. Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol. 2014; 109:(10):. 1547–61. https://doi.org/10.1038/ajg.2014.202
    [Google Scholar]
  15. Martín R, Miquel S, Ulmer J, Kechaou N, Langella P, et al. Role of commensal and probiotic bacteria in human health: a focus on inflammatory bowel disease. Microb Cell Fact. 2013; 12:71. https://doi.org/10.1186/1475-2859-12-71
    [Google Scholar]
  16. Bibi Z, Ashraf K, Shehzadi A, Rehman A, Bukhari DA. Evaluation of isolated probiotics on the efficacy of immune system in male and female Wistar rats. Saudi Pharm J. 2023; 31:1036–46. https://doi.org/10.1016/j.jsps.2023.04.023
    [Google Scholar]
  17. Garuba T, Olabanji IT, Awogboro OM, Olahan GS, Atunwa SA, Ahmed OA, et al. Haematological, serum biochemical and histopathological changes in acute and sub-chronic aqueous extract of oyster mushroom in male Wistar rats. J Sci Res. 2023; 15:(1):. 201–13. https://doi.org/10.3329/jsr.v15i1.59309
    [Google Scholar]
  18. Qiu P, Ishimoto T, Fu L, Zhang J, Zhang Z, Liu Y. The gut microbiota in inflammatory bowel disease. Front Cell Infect Microbiol. 2022; 12:733992. https://doi.org/10.3389/fcimb.2022.733992
    [Google Scholar]
  19. Wong Yang JY, Lee SN, Chang SY, Ko HJ, Ryu S, et al. A mouse model of shigellosis by intraperitoneal infection. J Infect Dis. 2014;15: 209:(2):203–15. https://doi.org/10.1093/infdis/jit399
    [Google Scholar]
  20. Hale TL, Formal SB. Pathogenesis of shigella infections. Pathol Immunopathol Res. 1987; 6:(2):. 117–27. https://doi.org/10.1159/000157053
    [Google Scholar]
  21. Martino MC, Rossi G, Tattoli I, Martini I, Chiavolini D, Cortese G, et al. Intravenous infection of virulent Shigellae causes fulminant hepatitis in mice. Cell Microbiol. 2005; 7:(1):. 115–27. https://doi.org/10.1111/j.1462-5822.2004.00441.x
    [Google Scholar]
  22. Meurman JH, Stamatova I. Probiotics: contributions to oral health. Oral Dis. 2007; 13:(5):. 443–51. https://doi.org/10.1111/j.1601-0825.2007.01386.x
    [Google Scholar]
  23. Kahsay AG, Muthupandian S. A review on Sero diversity and antimicrobial resistance patterns of Shigella species in Africa, Asia and South America, 2001–2014. BMC Res Notes. 2016; 9:422. https://doi.org/10.1186/s13104-016-2236-7
    [Google Scholar]
  24. Ganzle MG. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Food Microbiol Funct Foods Nutr. 2015; 2:106–17. https://doi.org/10.1016/j.cofs.2015.03.001
    [Google Scholar]
  25. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 8th ed. Washington (DC)National Academies Press (US). 2011. https://doi.org/10.17226/12910
    [Google Scholar]
  26. Sakai Y, Nasti A, Takeshita Y, Okumura M, Kitajima S, et al. Eight-year longitudinal study of whole blood gene expression profiles in individuals undergoing long-term medical follow-up. Sci Rep. 2021; 11:(1):. 16564. https://doi.org/10.1038/s41598-021-96078-0
    [Google Scholar]
  27. Chabot-Richards DS, George TI. Leukocytosis. Int J Lab Hematol. 2014; 36:(3):. 279–88. https://doi.org/10.1111/ijlh.12212
    [Google Scholar]
  28. Fournier J, Gönczy L, Lambert JF, Christin A. Interprétation de la répartition leucocytaire : osez ! [Interpretation of differential blood count]. Revue Médicale Suisse. 2020; 16:(705):. 1613–7.
    [Google Scholar]
  29. Flecknell PA. Clinical, biochemical and haematological reference values in normal experimental animals. J Clin Pathol. 1979; 32:(1):96.
    [Google Scholar]
  30. Feldman BF, Zinkl JG, Jain NC. Schalm’s veterinary hematology. 5th ed. Lippincott Williams & Wilkins, 2000p. 1120–4.
    [Google Scholar]
  31. Enos KE, Moore DM. Hematology of laboratory animals. In: Weiss DJ, Wardrop KJ, Schalm OW, editors. Schalm’s veterinary hematology. Ames, IowaWiley2018. https://doi.org/10.1002/9781119500537.ch118
    [Google Scholar]
  32. Loeb WF, Quimby FW. The clinical chemistry of laboratory animals. UKPergamon Press1989519 pp.
    [Google Scholar]
  33. Gulati G, Uppal G, Gong J. Unreliable automated complete blood count results: causes, recognition, and resolution. Ann Lab Med. 2022; 1;42:(5):. 515–30. https://doi.org/10.3343/alm.2022.42.5.515
    [Google Scholar]
  34. Turner J, Parsi M, Badireddy M. Anemia. 2023 Aug 8. In: StatPearls. Treasure Island (FL)StatPearls Publishing2025p. 29763170.
    [Google Scholar]
  35. Cascio MJ, DeLoughery TG. Anemia: evaluation and diagnostic tests. Med Clin N Am. 2017; 101:(2):. 263–84. https://doi.org/10.1016/j.mcna.2016.09.003
    [Google Scholar]
  36. Noumani I, Harrison CN, McMullin MF. Erythrocytosis: diagnosis and investigation. Int J Lab Hematol. 2024; 46:(1):. 55–62. https://doi.org/10.1111/ijlh.14298
    [Google Scholar]
  37. Bessman JD, Gilmer PR Jr, Gardner FH. Improved classification of anemias by MCV and RDW. Am J Clin Pathol. 1983; 80:(3):. 322–6. https://doi.org/10.1093/ajcp/80.3.322
    [Google Scholar]
  38. Vilela SF, Barbosa JO, Rossoni RD, Santos JD, Prata MC, Anbinder AL, et al. Lactobacillus acidophilus ATCC 4356 inhibits biofilm formation by C. albicans and attenuates the experimental candidiasis in Galleria mellonella. Virulence. 2015; 6:(1):. 29–39. https://doi.org/10.4161/21505594.2014.981486
    [Google Scholar]
  39. Ruggiero P. Use of probiotics in the fight against Helicobacter pylori. World J Gastrointest Pathophysiol. 2014; 5:(4):. 384–91. https://doi.org/10.4291/wjgp.v5.i4.384
    [Google Scholar]
  40. O’Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol. 1992; 180:65–94. https://doi.org/10.1007/978-3-642-77238-2_4
    [Google Scholar]
  41. Nataro JP, Seriwatana J, Fasano A, Maneval DR, Guers LD, Noriega F, et al. Identification and cloning of a novel plasmid-encoded enterotoxin of enteroinvasive Escherichia coli and Shigella strains. Infect Immun. 1995; 63:(12):4721–8. https://doi.org/10.1128/iai.63.12.4721-4728.1995
    [Google Scholar]
  42. Zhang Y, Tan P, Zhao Y, Ma X. Enterotoxigenic Escherichia coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes. 2022; 14:(1):2055943. https://doi.org/10.1080/19490976.2022.2055943
    [Google Scholar]
  43. Buysse JM, Stover CK, Oaks EV, Venkatesan M, Kopecko DJ. Molecular cloning of invasion plasmid antigen (ipa) genes from Shigella flexneri: analysis of ipa gene products and genetic mapping. J Bacteriol. 1987; 169:(6):2561–9. https://doi.org/10.1128/jb.169.6.2561-2569.1987
    [Google Scholar]
  44. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Ann Rev Biochem. 2002; 71:635–700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
    [Google Scholar]
  45. Eun CS, Kim YS, Han DS, Choi JH, Lee AR, Park YK. Lactobacillus casei prevents impaired barrier function in intestinal epithelial cells. J Pathol Microbiol Immunol. 2011Jan; 119:(1):49–56. https://doi.org/10.1111/j.1600-0463.2010.02691.x
    [Google Scholar]
  46. Beutler BA. TLRs and innate immunity. Blood. 2009; 113:(7):1399–407. https://doi.org/10.1182/blood-2008-07-019307
    [Google Scholar]
  47. Jennison AV, Verma NK. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev. 2004; 28:(1):43–58. https://doi.org/10.1016/j.femsre.2003.07.002
    [Google Scholar]
  48. Chandrasekaran P, Weiskirchen S, Weiskirchen R. Effects of probiotics on gut microbiota: an overview. Int J Mol Sci. 2024; 25:(11):6022. https://doi.org/10.3390/ijms25116022
    [Google Scholar]
  49. Deng Z, Han D, Wang Y, Wang Q, Yan X, Wang S, et al. Lactobacillus casei protects intestinal mucosa from damage in chicks caused by Salmonella pullorum via regulating immunity and the Wnt signaling pathway and maintaining the abundance of gut microbiota. Poult Sci. 2021; 100:(8):101283. https://doi.org/10.1016/j.psj.2021.101283
    [Google Scholar]
  50. Qin D, Ma Y, Wang Y, Hou X, Yu L. Contribution of Lactobacilli on intestinal mucosal barrier and diseases: perspectives and challenges of Lactobacillus casei. Life. 2022; 12:(11):1910. https://doi.org/10.3390/life12111910
    [Google Scholar]
/content/journals/10.5339/qjph.2025.6
Loading
/content/journals/10.5339/qjph.2025.6
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): hematological testLactobacillus caseiprobiotics and Shigella flexneri
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error