1887
2 - Unified National Conference of Iraqi Dental Colleges (UNCIDC)
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Using a dip-coating technique, this study evaluated the microshear bond strength of resin cement to zirconia surfaces coated with nanosilica and nanoalumina.

Zirconia blocks (n = 56) were categorized into seven groups based on surface treatment: untreated (control), tribochemical silica coating (positive control), dip coating with pure nanosilica, pure nanoalumina, and nanosilica-nanoalumina mixtures at 75:25, 50:50, and 25:75 volume ratios. The coated surfaces underwent characterization using a Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), X-ray Diffraction (XRD), and Atomic Force Microscopy (AFM). Resin cylinders were cemented onto the treated zirconia surfaces, and microshear bond strength testing was performed. Differences in bond strength between groups were analyzed using One-way ANOVA and Tukey’s post-hoc test (p < 0.05).

SEM revealed that nanosilica coatings formed island-like agglomerations, nanosilica-nanoalumina produced porous layers, and nanoalumina formed a dense cover layer. XRD detected only the tetragonal phase in coated zirconia, indicating no phase transformation compared to tribochemical silica coating. Microshear bond strength was higher for all coating groups than for controls (p < 0.05). The 75:25 nanosilica-nanoalumina demonstrated greater bond strength than other ratios.

Dip-coating proved effective in enhancing resin-zirconia bonding without causing surface damage. Among the various ratios, the 75:25 nanosilica-nanoalumina mixture exhibited optimal bond strength.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2024.uncidc.6
2024-02-13
2024-05-16
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2024/2/jemtac.2024.uncidc.6.html?itemId=/content/journals/10.5339/jemtac.2024.uncidc.6&mimeType=html&fmt=ahah

References

  1. Denry I, Kelly JR. Emerging ceramic-based materials for dentistry. J Dent Res. 2014 Dec; 93:(12):1235-42. doi: 10.1177/0022034514553627.
    [Google Scholar]
  2. Kontonasaki E, Giasimakopoulos P, Rigos AE. Strength and aging resistance of monolithic zirconia: an update to current knowledge. Jpn Dent Sci Rev. 2020 Dec; 56:(1):1-23. doi: 10.1016/j.jdsr.2019.09.002.
    [Google Scholar]
  3. Jurado CA, Villalobos-Tinoco J, Watanabe H, Sanchez-Hernandez R, Tsujimoto A. Novel translucent monolithic zirconia fixed restorations in the esthetic zone. Clin Case Rep. 2022 Mar 6; 10:(3):e05499. doi: 10.1002/ccr3.5499.
    [Google Scholar]
  4. Farhan FA, Sulaiman E, Kutty MG. Effect of new zirconia surface coatings on the surface properties and bonding strength of veneering zirconia substrate. Surf Coatings Technol. 2018; 333::247–58. doi: 10.1016/j.surfcoat.2017.10.030.
    [Google Scholar]
  5. Bapat RA, Yang HJ, Chaubal TV, Dharmadhikari S, Abdulla AM, Arora S, et al. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Adv. 2022 Apr 27; 12:(20):12773-12793. doi: 10.1039/d2ra00006g.
    [Google Scholar]
  6. Hussain BMA, Aljafery AM. Effect of Addition ZrO2-Al2O3 Nanoparticles Mixture on Some Properties and Denture Base Adaptation of Heat Cured Acrylic Resin Denture Base Material. J Baghdad Coll Dent. 2015; 27:(3):15–21.
    [Google Scholar]
  7. Ns I. Evaluation the Effect of Glutaraldehyde Solution Addition on Some Mechanical Properties of Heat Cured Acrylic Denture Base Material. Int J Pharm Res. 2021; 13:(1):5505. doi: 10.31838/ijpr/2021.13.01.728.
    [Google Scholar]
  8. Jassim SJ, Majeed MA. Effect of plasma surface treatment of three different CAD/CAM materials on the micro shear bond strength with resin cement (A comparative in vitro study). Heliyon. 2023 Jun 29; 9:(7):e17790. doi: 10.1016/j.heliyon.2023.e17790.
    [Google Scholar]
  9. Ibraheem AF, Hmedat SJA. An in Vitro Evaluation of Fit of the Crowns Fabricated by Zirconium Oxide - Based Ceramic CAD/CAM Systems , before and after Porcelain Firing Cycles and after Glaze Cycles. J Baghdad Coll Dent. 2013; 25:(1):43–8.
    [Google Scholar]
  10. Alammar A, Blatz MB. The resin bond to high-translucent zirconia-A systematic review. J Esthet Restor Dent. 2022 Jan; 34:(1):117-135. doi: 10.1111/jerd.12876.
    [Google Scholar]
  11. Liang Z, Liu Y, Jiang Y, Liu P, Zhang Y, Meng F, et al. Effect of hot etching with HF on the surface topography and bond strength of zirconia. Front Mater. 2022; 9:(September):1–10. doi: 10.3389/fmats.2022.1008704.
    [Google Scholar]
  12. Su Z, Li M, Zhang L, Wang C, Zhang L, Xu J, et al. A novel porous silica-zirconia coating for improving bond performance of dental zirconia. J Zhejiang Univ Sci B. 2021 Mar 15; 22:(3):214-222. doi: 10.1631/jzus.B2000448.
    [Google Scholar]
  13. Lim MJ, Kim TG, Yu MK, Lee KW. Effects of different silica-based layer coatings on bond strength of Y-TZP to bovine dentin. Dent Mater J. 2020 Jan 31; 39:(1):154-160. doi: 10.4012/dmj.2018-317.
    [Google Scholar]
  14. Alqutaibi AY, Ghulam O, Krsoum M, Binmahmoud S, Taher H, Elmalky W, et al. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules. 2022 Mar 4; 27:(5):1699. doi: 10.3390/molecules27051699.
    [Google Scholar]
  15. Kern M. Bonding to oxide ceramics—laboratory testing versus clinical outcome. Dent Mater. 2015 Jan; 31:(1):8-14. doi: 10.1016/j.dental.2014.06.
    [Google Scholar]
  16. Nagaoka N, Yoshihara K, Tamada Y, Yoshida Y, Meerbeek BV. Ultrastructure and bonding properties of tribochemical silica-coated zirconia. Dent Mater J. 2019 Feb 8; 38:(1):107-113. doi: 10.4012/dmj.2017-397.
    [Google Scholar]
  17. Madani A, Nakhaei M, Karami P, Rajabzadeh G, Salehi S, Bagheri H. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain. Int J Nanomedicine. 2016 Jul 14; 11::3215-23. doi: 10.2147/IJN.S104885.
    [Google Scholar]
  18. Lung CY, Kukk E, Matinlinna JP. The effect of silica-coating by sol-gel process on resin-zirconia bonding. Dent Mater J. 2013; 32:(1):165-72. doi: 10.4012/dmj.2012-100.
    [Google Scholar]
  19. Chen C, Chen G, Xie H, Dai W, Zhang F. Nanosilica coating for bonding improvements to zirconia. Int J Nanomedicine. 2013; 8::4053-62. doi: 10.2147/IJN.S52145.
    [Google Scholar]
  20. Oliveira-Ogliari A, Collares FM, Feitosa VP, Sauro S, Ogliari FA, Moraes RR. Methacrylate bonding to zirconia by in situ silica nanoparticle surface deposition. Dent Mater. 2015 Jan; 31:(1):68-76. doi: 10.1016/j.dental.2014.11.011.
    [Google Scholar]
  21. Şişmanoğlu S, Turunç-Oğuzman R. Microshear bond strength of contemporary self-adhesive resin cements to CAD/CAM restorative materials: effect of surface treatment and aging. J Adhes Sci Technol. 2020; 34:(22):2484–98. doi: 10.1080/01694243.2020.1763543.
    [Google Scholar]
  22. Kim D-W, Lee J-J, Kim K-A, Seo J-M. Influence of nanostructured alumina coating treatment on shear bond strength between zirconia ceramic and resin cement. J Korean Acad Prosthodont. 2016; 54:(4):354. doi: 10.4047/jkap.2016.54.4.354.
    [Google Scholar]
  23. Ismail AM, Bourauel C, ElBanna A, Salah Eldin T. Micro versus Macro Shear Bond Strength Testing of Dentin-Composite Interface Using Chisel and Wireloop Loading Techniques. Dent J (Basel). 2021 Nov 30; 9:(12):140. doi: 10.3390/dj9120140.
    [Google Scholar]
  24. Liu JF, Yang CC, Luo JL, Liu YC, Yan M, Ding SJ. Bond strength of self-adhesive resin cements to a high transparency zirconia crown and dentin. J Dent Sci. 2022 Apr; 17:(2):973-983. doi: 10.1016/j.jds.2021.12.008.
    [Google Scholar]
  25. Matinlinna JP, Lung CYK, Tsoi JKH. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018; 34::13–28. doi: 10.1016/j.dental.2017.09.002.
    [Google Scholar]
  26. Fernandes V, Oliani MG, Nogueira L, Silva J, Araújo RM. Analysis and Comparison of Different Bond Strength Tests. JSM Dent. 2016; 4:(5):1076.
    [Google Scholar]
  27. Gans A, Dressaire E, Colnet B, Saingier G, Bazant MZ, Sauret A. Dip-coating of suspensions. Soft Matter. 2019; 15:(2):252–61. doi: 10.1039/C8SM01785A.
    [Google Scholar]
  28. Liu H, Hou X, Li X, Jiang H, Tian Z, Ali MKA. Effect of Mixing Temperature, Ultrasonication Duration and Nanoparticles/Surfactant Concentration on the Dispersion Performance of Al2O3 Nanolubricants. Res Sq. 2020. doi: 10.21203/rs.3.rs-84466/v1.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jemtac.2024.uncidc.6
Loading
/content/journals/10.5339/jemtac.2024.uncidc.6
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error