1887
Volume 2016, Issue 1
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Traumatic haemorrhagic shock can be difficult to diagnose. Models for predicting critical bleeding and massive transfusion have been developed to aid clinicians. The aim of this review is to outline the various available models and report on their performance and validation. A review of the English and non-English literature in Medline, PubMed and Google Scholar was conducted from 1990 to September 2015. We combined several terms for i) haemorrhage AND ii) prediction, in the setting of iii) trauma. We included models that had at least two data points. We extracted information about the models, their developments, performance and validation. There were 36 different models identified that diagnose critical bleeding, which included a total of 36 unique variables. All models were developed retrospectively. The models performed with variable predictive abilities–the most superior with an area under the receiver operating characteristics curve of 0.985, but included detailed findings on imaging and was based on a small cohort. The most commonly included variable was systolic blood pressure, featuring in all but five models. Pattern or mechanism of injury were used by 16 models. Pathology results were used by 15 models, of which nine included base deficit and eight models included haemoglobin. Imaging was utilised in eight models. Thirteen models were known to be validated, with only one being prospectively validated. Several models for predicting critical bleeding exist, however none were deemed accurate enough to dictate treatment. Potential areas of improvement identified include measures of variability in vital signs and point of care imaging and pathology testing.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2016.3
2016-05-19
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2016/1/jemtac.2016.3.html?itemId=/content/journals/10.5339/jemtac.2016.3&mimeType=html&fmt=ahah

References

  1. Peden M, McGee K, Krug E. Injury: A Leading Cause of the Global Burden of Disease. Geneva: World Health Organization 2000.
    [Google Scholar]
  2. Geeraedts LM Jr, Kaasjager HA, van Vugt AB, Frölke JP. Exsanguination in trauma: A review of diagnostics and treatment options. Injury. 2009; 40:1:1120.
    [Google Scholar]
  3. Cothren CC, Moore EE, Hedegaard HB, Meng K. Epidemiology of urban trauma deaths: A comprehensive reassessment 10 years later. World J Surg. 2007; 31:7:15071511.
    [Google Scholar]
  4. Gruen RL, Brohi K, Schreiber M, Balogh ZJ, Pitt V, Narayan M, Maier RV. Haemorrhage control in severely injured patients. Lancet. 2012; 380:9847:10991108.
    [Google Scholar]
  5. Mitra B, Gabbe BJ, Kaukonen KM, Olaussen A, Cooper DJ, Cameron PA. Long-term outcomes of patients receiving a massive transfusion after trauma. Shock. 2014; 42:4:307312.
    [Google Scholar]
  6. Rossaint R, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar E, Hunt BJ, Komadina R, Nardi G, Neugebauer E, Ozier Y, Riddez L, Schultz A, Stahel PF, Vincent JL, Spahn DR, Task Force for Advanced Bleeding Care in Trauma . Management of bleeding following major trauma: An updated European guideline. Crit Care. 2010; 14:2:R52.
    [Google Scholar]
  7. Pommerening MJ, Goodman MD, Holcomb JB, Wade CE, Fox EE, Del Junco DJ, Brasel KJ, Bulger EM, Cohen MJ, Alarcon LH, Schreiber MA, Myers JG, Phelan HA, Muskat P, Rahbar M, Cotton BA, MPH on behalf of the PROMMTT Study Group . Clinical gestalt and the prediction of massive transfusion after trauma. Injury. 2015; 46:5:807813.
    [Google Scholar]
  8. Shackelford SA, Colton K, Stansbury LG, Galvagno SM Jr, Anazodo AN, DuBose JJ, Hess JR, Mackenzie CF. Early identification of uncontrolled hemorrhage after trauma: Current status and future direction. J Trauma Acute Care Surg. 2014; 77:3 Suppl 2:S222S227.
    [Google Scholar]
  9. Zou KH, O'Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation. 2007; 115:5:654657.
    [Google Scholar]
  10. Ardagh MW, Hodgson T, Shaw L, Turner D. Pulse rate over pressure evaluation (ROPE) is useful in the assessment of compensated haemorrhagic shock. Emerg Med (Fremantle). 2001; 13:1:4346.
    [Google Scholar]
  11. Baker JB, Korn CS, Robinson K, Chan L, Henderson SO. Type and crossmatch of the trauma patient. J Trauma. 2001; 50:5:878881.
    [Google Scholar]
  12. Blackmore CC, Cummings P, Jurkovich GJ, Linnau KF, Hoffer EK, Rivara FP. Predicting major hemorrhage in patients with pelvic fracture. J Trauma. 2006; 61:2:346352.
    [Google Scholar]
  13. Callcut RA, Cotton BA, Muskat P, Fox EE, Wade CE, Holcomb JB, Schreiber MA, Rahbar MH, Cohen MJ, Knudson MM, Brasel KJ, Bulger EM, Del Junco DJ, Myers JG, Alarcon LH, Robinson BR, PROMMTT Study Group . Defining when to initiate massive transfusion: A validation study of individual massive transfusion triggers in PROMMTT patients. J Trauma Acute Care Surg. 2013; 74:1:5965, 67–8; discussion 66–7.
    [Google Scholar]
  14. Callcut RA, Johannigman JA, Kadon KS, Hanseman DJ, Robinson BR. All massive transfusion criteria are not created equal: Defining the predictive value of individual transfusion triggers to better determine who benefits from blood. J Trauma. 2011; 70:4:794801.
    [Google Scholar]
  15. Cancio LC, Wade CE, West SA, Holcomb JB. Prediction of mortality and of the need for massive transfusion in casualties arriving at combat support hospitals in Iraq. J Trauma. 2008; 64:2:S51S55.
    [Google Scholar]
  16. Chen L, Reisner AT, McKenna TM, Gribok A, Reifman J. Diagnosis of hemorrhage in a prehospital trauma population using linear and nonlinear multiparameter analysis of vital signs. Proceedings of the 29th Annual International Conference of the IEEE EMBS. France. 2007;27482751.
    [Google Scholar]
  17. DeMuro JP, Simmons S, Jax J, Gianelli SM. Application of the Shock Index to the prediction of need for hemostasis intervention. Am J Emerg Med. 2013; 31:8:12601263.
    [Google Scholar]
  18. Dente CJ, Shaz BH, Nicholas JM, Harris RS, Wyrzykowski AD, Ficke BW, Vercruysse GA, Feliciano DV, Rozycki GS, Salomone JP, Ingram WL. Early predictors of massive transfusion in patients sustaining torso gunshot wounds in a civilian level I trauma center. J Trauma. 2010; 68:2:298304.
    [Google Scholar]
  19. Jones J, Newman C, Krohmer J, Mattice C. Accuracy of the prehospital index in identifying major hemorrhage in trauma victims. Prehosp Disaster Med. 1993; 8:3:237240.
    [Google Scholar]
  20. Larson CR, White CE, Spinella PC, Jones JA, Holcomb JB, Blackbourne LH, Wade CE. Association of shock, coagulopathy, and initial vital signs with massive transfusion in combat casualties. J Trauma. 2010; 69:1:S26S32.
    [Google Scholar]
  21. Lawton LD, Roncal S, Leonard E, Stack A, Dinh MM, Byrne CM, Petchell J. The utility of advanced trauma life support (ATLS) clinical shock grading in assessment of trauma. Emerg Med J. 2014; 31::384389.
    [Google Scholar]
  22. Liu J, Khitrov MY, Gates JD, Odom SR, Havens JM, de Moya MA, Wilkins K, Wedel SK, Kittell EO, Reifman J, Reisner AT. Automated analysis of vital signs to identify patients with substantial bleeding before hospital arrival: A feasibility study. Shock. 2015; 43:5:429436.
    [Google Scholar]
  23. Mackenzie CF, Wang Y, Hu PF, Chen SY, Chen HH, Hagegeorge G, Stansbury LG, Shackelford S, ONPOINT Study Group . Automated prediction of early blood transfusion and mortality in trauma patients. J Trauma Acute Care Surg. 2014; 76:6:13791385.
    [Google Scholar]
  24. McLaughlin DF, Niles SE, Salinas J, Perkins JG, Cox ED, Wade CE, Holcomb JB. A predictive model for massive transfusion in combat casualty patients. J Trauma. 2008; 64:2:S57S63.
    [Google Scholar]
  25. Mina MJ, Winkler AM, Dente CJ. Let technology do the work: Improving prediction of massive transfusion with the aid of a smartphone application. J Trauma. 2013; 75:4:669675.
    [Google Scholar]
  26. Mitra B, Fitzgerald M, Chan J. The utility of a shock index ≥ 1 as an indication for pre-hospital oxygen carrier administration in major trauma. Injury. 2014; 45:1:6165.
    [Google Scholar]
  27. Moore F, McKinley B, Moore E, Nathens A, Rhee P, Puyana J, Beilman G, Cohn S. Need for massive transfusion can be predicted early after trauma center arrival. 37th Annual Scientific Meeting of the Western Trauma Association Colorado, 2007.
    [Google Scholar]
  28. Nunez TC, Voskresensky DossettLA IV, Shinall R, Dutton WD, Cotton BA. Early prediction of massive transfusion in trauma: Simple as ABC (assessment of blood consumption)? J Trauma. 2009; 66:2:346352.
    [Google Scholar]
  29. Ogura T, Nakano M, Nakamura Y, Takahashi E, Nakamura M, Miyazaki D, Machida H, Suzuki H, Fujizuka K, Amemiya Y, Harasawa T. The novel and useful scoring system to predict massive transfusion for trauma patients: Traumatic bleeding severity score (TBSS). Circulation. 2012; 126:21:S1.
    [Google Scholar]
  30. Olaussen A, Peterson EL, Mitra B, O'Reilly G, Jennings PA, Fitzgerald M. Massive transfusion prediction with inclusion of the pre-hospital shock index. Injury. 2015; 46:5:822826.
    [Google Scholar]
  31. Ordonez CA, Badiel M, Pino LF, Salamea JC, Loaiza JH, Parra MW, Puyana JC. Damage control resuscitation: Early decision strategies in abdominal gunshot wounds using an easy “ABCD” mnemonic. J Trauma Acute Care Surg. 2012; 73:5:10741078.
    [Google Scholar]
  32. Rainer TH, Ho AM, Yeung JH, Cheung NK, Wong RS, Tang N, Ng SK, Wong GK, Lai PB, Graham CA. Early risk stratification of patients with major trauma requiring massive blood transfusion. Resuscitation. 2011; 82:6:724729.
    [Google Scholar]
  33. Raux M, Sartorius D, Le Manach Y, David JS, Riou B, Vivien B. What do prehospital trauma scores predict besides mortality? J Trauma. 2011; 71:3:754759.
    [Google Scholar]
  34. Ruchholtz S, Pehle B, Lewan U, Lefering R, Müller N, Oberbeck R, Waydhas C. The emergency room transfusion score (ETS): Prediction of blood transfusion requirement in initial resuscitation after severe trauma. Transfus Med. 2006; 16:1:4956.
    [Google Scholar]
  35. Schreiber MA, Perkins J, Kiraly L, Underwood S, Wade C, Holcomb JB. Early predictors of massive transfusion in combat casualties. J Am Coll Surg. 2007; 205:4:541545.
    [Google Scholar]
  36. Vandromme MJ, Griffin RL, Kerby JD, McGwin G Jr, Rue LW 3rd, Weinberg JA. Identifying risk for massive transfusion in the relatively normotensive patient: Utility of the prehospital shock index. J Trauma. 2011; 70:2:384390.
    [Google Scholar]
  37. Vandromme MJ, Griffin RL, McGwin G Jr, Weinberg JA, Rue LW 3rd, Kerby JD. Prospective identification of patients at risk for massive transfusion: An imprecise endeavor. Am Surg. 2011; 77:2:155161.
    [Google Scholar]
  38. Wade CE, del Junco DJ, Holcomb JB, Trauma Outcomes Group , Holcomb JB, Wade CE, Brasel KJ, Vercruysse G, MacLeod J, Dutton RP, Hess JR, Duchesne JC, McSwain N, Muskat P, Johannigman J, Cryer HM, Tillou A, Cohen MJ, Pittet JF, Knudson P, De Moya MA, Schreiber MA, Tieu B, Brundage S, Napolitano LM, Brunsvold M, Sihler KC, Beilman G, Peitzman AB, Zenait MS, Sperry J, Alarcon L, Croce MA, Minei JP, Kozar R, Gonzalez EA, Stewart RM, Cohn SM, Mickalek JE, Bulger EM, Cotton BA, Nunez TC, Ivatury R, Meredith JW, Miller P, Pomper GJ, Marin B. Variations between level I trauma centers in 24-hour mortality in severely injured patients requiring a massive transfusion. J Trauma. 2011; 71:2 Suppl 3:S389S393.
    [Google Scholar]
  39. West HC, Jurkovich G, Donnell C, Luterman A. Immediate prediction of blood requirements in trauma victims. South Med J. 1989; 82:2:186189.
    [Google Scholar]
  40. Yuan F, Ding J, Chen H, Guo Y, Wang G, Gao WW, Chen SW, Tian HL. Predicting progressive hemorrhagic injury after traumatic brain injury: Derivation and validation of a risk score based on admission characteristics. J Neurotrauma. 2012; 29:12:21372142.
    [Google Scholar]
  41. Yucel N, Lefering R, Maegele M, Vorweg M, Tjardes T, Ruchholtz S, Neugebauer EA, Wappler F, Bouillon B, Rixen D, Polytrauma Study Group of the German Trauma Society . Trauma associated severe hemorrhage (TASH)-score: Probability of mass transfusion as surrogate for life threatening hemorrhage after multiple trauma. J Trauma. 2006; 60:6:12281236, discussion 36–7.
    [Google Scholar]
  42. Ogura T, Nakamura Y, Nakano M, Izawa Y, Nakamura M, Fujizuka K, Suzukawa M, Lefor AT. Predicting the need for massive transfusion in trauma patients: The traumatic bleeding severity score. J Trauma Acute Care Surg. 2014; 76:5:12431250.
    [Google Scholar]
  43. Olaussen A, Blackburn T, Mitra B, Fitzgerald M. Review article: Shock index for prediction of critical bleeding post-trauma: A systematic review. Emerg Med Australas. 2014; 26:3:223228.
    [Google Scholar]
  44. Kuhne CA, Zettl RP, Fischbacher M, Lefering R, Ruchholtz S. Emergency transfusion score (ETS): A useful instrument for prediction of blood transfusion requirement in severely injured patients. World J Surg. 2008; 32:6:11831188.
    [Google Scholar]
  45. Guly HR, Bouamra O, Little R, Dark P, Coats T, Driscoll P, Lecky FE. Testing the validity of the ATLS classification of hypovolaemic shock. Resuscitation. 2010; 81:9:11421147.
    [Google Scholar]
  46. Lefering R. Trauma scoring systems. Curr Opin Crit Care. 2012; 18:6:637640.
    [Google Scholar]
  47. Grady D, Berkowitz SA. Why is a good clinical prediction rule so hard to find? Arch Intern Med. 2011; 171:19:17011702.
    [Google Scholar]
  48. Siontis GC, Tzoulaki I, Ioannidis JP. Predicting death: An empirical evaluation of predictive tools for mortality. Arch Intern Med. 2011; 171:19:17211726.
    [Google Scholar]
  49. Keuter K, Ablah E, Vasquez D, Wetta-Hall R, Hawley SR. Blood transfusions in elderly trauma patients: Is there a role for restrictive use? J Am Geriatr Soc. 2008; 56:1:168170.
    [Google Scholar]
  50. Mitra B, Olaussen A, Cameron PA, Fitzgerald M. Massive blood transfusions post trauma in the elderly compared to younger patients. Injury. 2014; 45:9:12961300.
    [Google Scholar]
  51. Luna GK, Eddy AC, Copass M. The sensitivity of vital signs in identifying major thoracoabdominal hemorrhage. Am J Surg. 1989; 157:5:512515.
    [Google Scholar]
  52. Pacagnella RC, Souza JP, Durocher J, Perel P, Blum J, Winikoff B, Gülmezoglu AM. A systematic review of the relationship between blood loss and clinical signs. PLoS One. 2013; 8:3:e57594.
    [Google Scholar]
  53. Parks JK, Elliott AC, Gentilello LM, Shafi S. Systemic hypotension is a late marker of shock after trauma: A validation study of advanced trauma life support principles in a large national sample. Am J Surg. 2006; 192:6:727731.
    [Google Scholar]
  54. Partrick DA, Bensard DD, Janik JS, Karrer FM. Is hypotension a reliable indicator of blood loss from traumatic injury in children? Am J Surg. 2002; 184:6:555559, discussion 59–60.
    [Google Scholar]
  55. Demetriades D, Chan LS, Bhasin P, Berne TV, Ramicone E, Huicochea F, Velmahos G, Cornwell EE, Belzberg H, Murray J, Asensio JA. Relative bradycardia in patients with traumatic hypotension. J Trauma. 1998; 45:3:534539.
    [Google Scholar]
  56. Kristensen AK, Holler JG, Hallas J, Lassen A, Shapiro NI. Is shock index a valid predictor of mortality in emergency department patients with hypertension, diabetes, high age, or receipt of β- or calcium channel blockers? Ann Emerg Med. 2015; 67:1:106113.e6.
    [Google Scholar]
  57. Heuer M, Taeger G, Kaiser GM, Nast-Kolb D, Kuehne CA, Ruchholtz S, Lefering R, Paul A, Lendemans S, Trauma Registry of the DGU . Prognostic factors of liver injury in polytraumatic patients. Results from 895 severe abdominal trauma cases. J Gastrointestin Liver Dis. 2009; 18:2:197203.
    [Google Scholar]
  58. Starr AJ, Griffin DR, Reinert CM, Frawley WH, Walker J, Whitlock SN, Borer DS, Rao AV, Jones AL. Pelvic ring disruptions: Prediction of associated injuries, transfusion requirement, pelvic arteriography, complications, and mortality. J Orthop Trauma. 2002; 16:8:553561.
    [Google Scholar]
  59. Krumrei NJ, Park MS, Cotton BA, Zielinski MD. Comparison of massive blood transfusion predictive models in the rural setting. J Trauma Acute Care Surg. 2012; 72:1:211215.
    [Google Scholar]
  60. Rozycki GS, Ochsner MG, Schmidt JA, Frankel HL, Davis TP, Wang D, Champion HR. A prospective study of surgeon-performed ultrasound as the primary adjuvant modality for injured patient assessment. J Trauma. 1995; 39:3:492500.
    [Google Scholar]
  61. Verbeek DO, Zijlstra IA, van der Leij C, Ponsen KJ, van Delden OM, Goslings JC. Predicting the need for abdominal hemorrhage control in major pelvic fracture patients: The importance of quantifying the amount of free fluid. J Trauma Acute Care Surg. 2014; 76:5:12591263.
    [Google Scholar]
  62. Charbit J, Mahul M, Roustan JP, Latry P, Millet I, Taourel P, Capdevila X. Hemoperitoneum semiquantitative analysis on admission of blunt trauma patients improves the prediction of massive transfusion. Am J Emerg Med. 2013; 31:1:130136.
    [Google Scholar]
  63. Ahmed N, Kassavin D, Kuo YH, Biswal R. Sensitivity and specificity of CT scan and angiogram for ongoing internal bleeding following torso trauma. Emerg Med J. 2013; 30:3:e14.
    [Google Scholar]
  64. Mitra B, Cameron PA, Gruen RL, Mori A, Fitzgerald M, Street A. The definition of massive transfusion in trauma: A critical variable in examining evidence for resuscitation. Eur J Emerg Med. 2011; 18:3:137142.
    [Google Scholar]
  65. Rahbar MH, del Junco DJ, Huang H, Ning J, Fox EE, Zhang X, Schreiber MA, Brasel KJ, Bulger EM, Wade CE, Cotton BA, Phelan HA, Cohen MJ, Myers JG, Alarcon LH, Muskat P, Holcomb JB, PROMMTT Study Group . A latent class model for defining severe hemorrhage: Experience from the PROMMTT study. J Trauma Acute Care Surg. 2013; 75:1 Suppl 1:S82S88.
    [Google Scholar]
  66. Zatta AJ, McQuilten ZK, Mitra B, Roxby DJ, Sinha R, Whitehead S, Dunkley S, Kelleher S, Hurn C, Cameron PA, Isbister JP, Wood EM, Phillips LE, Massive Transfusion Registry Steering Committee . Elucidating the clinical characteristics of patients captured using different definitions of massive transfusion. Vox Sang. 2014; 107:1:6070.
    [Google Scholar]
  67. Cotton BA, Dossett LA, Haut ER, Shafi S, Nunez TC, Au BK, Zaydfudim V, Johnston M, Arbogast P, Young PP. Multicenter validation of a simplified score to predict massive transfusion in trauma. J Trauma. 2010; 69:7:S33S39.
    [Google Scholar]
  68. Mitra B, Rainer TH, Cameron PA. Predicting massive blood transfusion using clinical scores post-trauma. Vox Sang. 2012; 102:4:324330.
    [Google Scholar]
  69. Brockamp T, Nienaber U, Mutschler M, Wafaisade A, Peiniger S, Lefering R, Bouillon B, Maegele M, TraumaRegister DGU . Predicting on-going hemorrhage and transfusion requirement after severe trauma: A validation of six scoring systems and algorithms on the TraumaRegister DGU. Crit Care. 2012; 16:4:R129.
    [Google Scholar]
  70. Maegele M, Lefering R, Wafaisade A, Theodorou P, Wutzler S, Fischer P, Bouillon B, Paffrath T, Trauma Registry of Deutsche Gesellschaft für Unfallchirurgie (TR-DGU) . Revalidation and update of the TASH-score: A scoring system to predict the probability for massive transfusion as a surrogate for life-threatening haemorrhage after severe injury. Vox Sang. 2011; 100:2:231238.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jemtac.2016.3
Loading
/content/journals/10.5339/jemtac.2016.3
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error