1887
Volume 2020, Issue 1
  • ISSN: 1999-7086
  • EISSN: 1999-7094

Abstract

Currently, pulse pressure variation (PPV) is considered the gold standard dynamic variable for predicting fluid responsiveness. Distensibility index of inferior vena cava (dIVC) is also considered a good predictor of fluid responsiveness. However, information from literature comparing the performance of both variables is still patchy and insufficient. Therefore, we aimed to investigate the accuracy of dIVC and PPV in predicting fluid responsiveness and compare the predictive power of both techniques. We conducted our study in shocked patients receiving mechanical ventilation requiring fluid challenge. Hemodynamic variables, such as PPV and dIVC, were recorded before and after fluid challenges. Fluid responders were identified when cardiac output increased more than 15% after the first fluid challenge. Only the non-responders received a second fluid challenge (SFC) to define delayed responders. A total of 38 shocked patients were enrolled in this study. Twenty-one patients (55.3%) were fluid responders. The area under the receiver operating characteristic (AUROC) curve of PPV was 0.78 ± 0.08 with a best cutoff of 10.5 (sensitivity: 76.2%; specificity: 70.6%). The AUROC curve of dIVC was 0.75 ± 0.07, and the best cutoff value to predict fluid responsiveness was 16.5% with a sensitivity of 71.43% and specificity of 76.5%. Four patients from the non-responder group became responders after the SFC. No statistically significant difference was observed between the predictive performance of PPV and dIVC. Our findings indicate that the performance of PPV for predicting fluid responsiveness was similar to that of dIVC. PPV and dIVC are moderately predictive of fluid responsiveness.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2020.2
2020-04-13
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2020/1/jemtac.2020.2.html?itemId=/content/journals/10.5339/jemtac.2020.2&mimeType=html&fmt=ahah

References

  1. Marik PE, Monnet X, Teboul J-L. Hemodynamic parameters to guide fluid therapy. Ann. Intensive Care. 2011; 1::1.
    [Google Scholar]
  2. Pinsky MR. Functional haemodynamic monitoring. Curr. Opin. Crit. Care. 2014; 20::288293.
    [Google Scholar]
  3. Hu B, Xiang H, Liang H, Yu L, Xu T, Yang JH, et al.  Assessment effect of central venous pressure in fluid resuscitation in the patients with shock: a multi-center retrospective research. Chin. Med. J. (Engl). 2013; 126:10:18441849.
    [Google Scholar]
  4. Russell JA. Drug therapy: Management of sepsis. N. Engl. J. Med. 2006; 355::16991713.
    [Google Scholar]
  5. Pereira de Souza Neto E, Grousson S, Duflo F, Ducreux C, Joly H, Convert J, et al.  Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and transthoracic echocardiography. Br. J. Anaesth. 2011; 106:6:856864.
    [Google Scholar]
  6. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am. J. Cardiol. 1990; 66::493496.
    [Google Scholar]
  7. Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011; 39::259265.
    [Google Scholar]
  8. Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al.  Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009; 76:4:422427.
    [Google Scholar]
  9. Jones AE. Lactate Clearance vs Central Venous Oxygen Saturation as Goals of Early Sepsis Therapy: A Randomized Clinical Trial. JAMA. 2010; 303::739.
    [Google Scholar]
  10. Jansen TC, van Bommel J, Schoonderbeek FJ, Sleeswijk Visser SJ, van der Klooster JM, Lima AP, et al.  Early Lactate-Guided Therapy in Intensive Care Unit Patients. Am. J. Respir. Crit. Care Med. 2010; 182:6:752761.
    [Google Scholar]
  11. Michard F, Teboul J-LL. Predicting fluid responsiveness in ICU patients: A critical analysis of the evidence. Chest. 2002; 121::20002008.
    [Google Scholar]
  12. Feissel M, Michard F, Faller J-PP, Teboul J-LL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004; 30::18341837.
    [Google Scholar]
  13. Barbier C, Loubières Y, Schmit C, Hayon J, Ricôme J-L, Jardin F, et al.  Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004; 30::17401746.
    [Google Scholar]
  14. Charbonneau H, Riu B, Faron M, Mari A, Kurrek MM, Ruiz J, et al.  Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters. Crit. Care. 2014; 18:5:473.
    [Google Scholar]
  15. Sobczyk D, Nycz K, Andruszkiewicz P, Wierzbicki K, Stapor M. Ultrasonographic caval indices do not significantly contribute to predicting fluid responsiveness immediately after coronary artery bypass grafting when compared to passive leg raising. Cardiovasc. Ultrasound. 2015; 14::23.
    [Google Scholar]
  16. Lu N, Xi X, Jiang L, Yang D, Yin K. Exploring the best predictors of fluid responsiveness in patients with septic shock. Am. J. Emerg. Med. 2017; 35::12581261.
    [Google Scholar]
  17. De Oliveira OH, Freitas FG, Ladeira RT, Fischer CH, Bafi AT, Azevedo LC, et al.  Comparison between respiratory changes in the inferior vena cava diameter and pulse pressure variation to predict fluid responsiveness in postoperative patients. J. Crit. Care. 2016; 34::4649.
    [Google Scholar]
  18. Moretti R, Pizzi B. Inferior Vena Cava Distensibility as a Predictor of Fluid Responsiveness in Patients with Subarachnoid Hemorrhage. Neurocrit. Care. 2010; 13::39.
    [Google Scholar]
  19. Cannesson M. Arterial Pressure Variation and Goal-Directed Fluid Therapy. J. Cardiothorac. Vasc. Anesth. 2010; 24::487497.
    [Google Scholar]
  20. Min JJ, Gil NS, Lee JH, Ryu DK, Kim CS, Lee SM. Predictor of fluid responsiveness in the ‘grey zone’: augmented pulse pressure variation through a temporary increase in tidal volume. Br. J. Anaesth. 2017; 119:1:5056.
    [Google Scholar]
  21. Biais M, Ehrmann S, Mari A, Conte B, Mahjoub Y, Desebbe O, et al.  Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach. Crit. Care. 2014; 18:6:587.
    [Google Scholar]
  22. Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a Tidal Volume Challenge Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation* . Crit. Care Med. 2017; 45:3:415421.
    [Google Scholar]
  23. Theerawit P, Morasert T, Sutherasan Y. Inferior vena cava diameter variation compared with pulse pressure variation as predictors of fluid responsiveness in patients with sepsis. J. Crit. Care. 2016; 36::246251.
    [Google Scholar]
  24. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit. Care Med. 1985; 13::818829.
    [Google Scholar]
  25. Arts DGT, de Keizer NF, Vroom MB, de Jonge E. Reliability and accuracy of Sequential Organ Failure Assessment (SOFA) scoring. Crit. Care Med. 2005; 33::19881993.
    [Google Scholar]
  26. Romero-Bermejo FJ, Ruiz-Bailen M, Guerrero-De-Mier M, Lopez-Alvaro J. Echocardiographic hemodynamic monitoring in the critically ill patient. Curr. Cardiol., Rev. 2011; 7::146156.
    [Google Scholar]
  27. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al.  Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure. Am. J. Respir. Crit. Care Med. 2000; 162:1:134138.
    [Google Scholar]
  28. Feissel M, Mangin I, Ruyer O, Faller JP, Michard F, Teboul JL. Respiratory Changes in Aortic Blood Velocity as an Indicator of Fluid Responsiveness in Ventilated Patients With Septic Shock. Chest. 2001; 119:3:867873.
    [Google Scholar]
  29. Bendjelid K, Romand J-A. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003; 29::352360.
    [Google Scholar]
  30. Rex S, Brose S, Metzelder S, Hüneke R, Schälte G, Autschbach R, et al.  Prediction of fluid responsiveness in patients during cardiac surgery. Br. J. Anaesth. 2004; 93:6:782788.
    [Google Scholar]
  31. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit. Care Med. 2009; 37::26422647.
    [Google Scholar]
  32. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit. Care Med. 2013; 41::17741781.
    [Google Scholar]
  33. Marik PE, Lemson J. Fluid responsiveness: An evolution of our understanding. Br. J. Anaesth. 2014; 112::617620.
    [Google Scholar]
  34. Lakhal K, Ehrmann S, Benzekri-Lefevre D, Runge I, Legras A, Dequin PF, et al.  Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit. Care. 2011; 15::R85.
    [Google Scholar]
  35. Monnet X, Bleibtreu A, Ferré A, Dres M, Gharbi R, Richard C, et al.  Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance. Crit. Care Med. 2012; 40:1:152157.
    [Google Scholar]
  36. Muller L, Louart G, Bousquet PJ, Candela D, Zoric L, de La Coussaye JE, et al.  The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med. 2010; 36:3:496503.
    [Google Scholar]
  37. Lakhal K, Ehrmann S, Boulain T. Pulse pressure variation: Does lung compliance really matter? Crit. Care Med. 2012; 40::1691.
    [Google Scholar]
  38. Freitas FGR, Bafi AT, Nascente AP, Assuncao M, Mazza B, Azevedo LC, et al.  Predictive value of pulse pressure variation for fluid responsiveness in septic patients using lung-protective ventilation strategies. Br. J. Anaesth. 2013; 110::402408.
    [Google Scholar]
  39. Grassi P, Lo Nigro L, Battaglia K, Barone M, Testa F, Berlot G. Pulse pressure variation as a predictor of fluid responsiveness in mechanically ventilated patients with spontaneous breathing activity: a pragmatic observational study. HSR Proc Intensive Care Cardiovasc anesth. 2013; 5:2:98109.
    [Google Scholar]
  40. Biais M, Ouattara A, Janvier G, Sztark F. Case scenario: Respiratory variations in arterial pressure for guiding fluid management in mechanically ventilated patients. Anesthesiology. 2012; 116::13541361.
    [Google Scholar]
  41. Long E, Oakley E, Duke T, Babl FE. Does Respiratory Variation in Inferior Vena Cava Diameter Predict Fluid Responsiveness. SHOCK. 2017; 47::550559.
    [Google Scholar]
  42. Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit. Care. 2018; 22::204.
    [Google Scholar]
  43. Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al.  Comparison of Echocardiographic Indices Used to Predict Fluid Responsiveness in Ventilated Patients. Am. J. Respir. Crit. Care Med. 2017; 195:8:10221032.
    [Google Scholar]
  44. Santa-Teresa P, Munoz J, Montero I, Zurita M, Tomey M, Alvarez-Sala L, et al.  Incidence and prognosis of intra-abdominal hypertension in critically ill medical patients: a prospective epidemiological study. Ann. Intensive Care. 2012; 2::S3.
    [Google Scholar]
/content/journals/10.5339/jemtac.2020.2
Loading
/content/journals/10.5339/jemtac.2020.2
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error