1887
Volume 2017, Issue 1
  • ISSN: 1999-7086
  • E-ISSN: 1999-7094

Abstract

Helicopter emergency medical services (HEMS) and ground EMS (GEMS) are both integral parts of out-of-hospital transport systems for patients with ST-elevation myocardial infarction (STEMI) undergoing emergency transport for primary percutaneous coronary intervention (PPCI). There are firm data linking time savings for PPCI transports with improved outcome. A previous pilot analysis generated preliminary estimates for potential HEMS-associated time savings for PPCI transports. This non-interventional multicenter study conducted over the period 2012–2014 at six centers in the USA and in the State of Qatar assessed a consecutive series of HEMS transports for PPCI; at one center consecutive GEMS transports of at least 15 miles were also assessed if they came from sites that also used HEMS (dual-mode referring hospitals). The study assessed time from ground or air EMS dispatch to transport a patient to a cardiac center, through to the time of patient arrival at the receiving cardiac unit, to determine proportions of patients arriving within accepted 90- and 120-minute time windows for PPCI. Actual times were compared to “route-mapping” GEMS times generated using geographical information software. HEMS' potential time savings were calculated using program-specific aircraft characteristics, and the potential time savings for HEMS was translated into estimated mortality benefit. The study included 257 HEMS and 27 GEMS cases. HEMS cases had a high rate of overall transport time (from dispatch to receiving cardiac unit arrival) that fell within the predefined windows of 90 minutes (67.7% of HEMS cases) and 120 minutes (91.1% of HEMS cases). As compared to the calculated GEMS times, HEMS was estimated to accrue a median time saving of 32 minutes (interquartile range, 17–46). The number needed to transport for HEMS to get one additional case to PPCI within 90 minutes was 3. In the varied contexts of this multicenter study, the number of lives saved by HEMS, solely through time savings, was calculated as 1.34 per 100 HEMS PPCI transports. In this multicenter study, HEMS PPCI transport was found to be appropriate as defined by meeting predefined time windows. The overall estimate for lives saved through time savings alone was consistent with previous pilot data and was also generally consistent with favorable cost-effectiveness. Further research is necessary to confirm these findings, but judicious HEMS deployment for PPCI transports is justified by these data.

Loading

Article metrics loading...

/content/journals/10.5339/jemtac.2017.8
2017-09-19
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/jemtac/2017/1/jemtac.2017.8.html?itemId=/content/journals/10.5339/jemtac.2017.8&mimeType=html&fmt=ahah

References

  1. [1]. Varon   J., , Fromm   R., , Marik   P. . Hearts in the air. . Chest . 2003; ;124: : 1636– 1637 .
    [Google Scholar]
  2. [2]. Selmer   R., , Halvorsen   S., , Myhre   KI., , Wisloff   TF., , Kristiansen   IS. . Cost-effectiveness of primary percutaneous coronary intervention versus thrombolytic therapy for acute myocardial infarction. . Scand Cardiovasc J . 2005; ;39: : 276– 285 .
    [Google Scholar]
  3. [3]. Straumann   E., , Yoon   S., , Naegeli   B. . Hospital transfer for primary coronary angioplasty in high risk patients with acute myocardial infarction. . Heart . 1999; ;82: : 415– 419 .
    [Google Scholar]
  4. [4]. Grines   C., , Westerhausen   D., , Grines   L. . A randomized trial of transfer for primary angioplasty versus on-site thrombolysis in patients with high-risk myocardial infarction (Air PAMI trial). . J Am Coll CarD . 2002; ;39: : 1713– 1719 .
    [Google Scholar]
  5. [5]. McMullan   JT., , Hinckley   W., , Bentley   J., , Davis   T., , Fermann   GJ., , Gunderman   M., , Hart   KW., , Knight   WA., , Lindsell   CJ., , Miller   C., , Shackleford   A., , Gibler   WB. . Ground emergency medical services requests for helicopter transfer of ST-segment elevation myocardial infarction patients decrease medical contact to balloon times in rural and suburban settings. . Acad Emerg Med . 2012; ;19: : 153– 160 .
    [Google Scholar]
  6. [6]. Palmer   C., , McMullan   J., , Knight   W., , Gunderman   M., , Hinckley   W. . Helicopter scene response for a STEMI patient transported directly to the cardiac catheterization laboratory. . Air Med J . 2011; ;30: : 289– 292 .
    [Google Scholar]
  7. [7]. Blankenship   JC., , Haldis   TA., , Wood   GC., , Skelding   KA., , Scott   T., , Menapace   FJ. . Rapid triage and transport of patients with ST-elevation myocardial infarction for percutaneous coronary intervention in a rural health system. . Am J Cardiol . 2007; ;100: : 944– 948 .
    [Google Scholar]
  8. [8]. Phillips   M., , Arthur   AO., , Chandwaney   R., , Hatfield   J., , Brown   B., , Pogue   K., , Thomas   M., , Lawrence   M., , McCarroll   M., , McDavid   M., , Thomas   SH. . Helicopter transport effectiveness of patients for primary percutaneous coronary intervention. . Air Med J . 2013; ;32: : 144– 152 .
    [Google Scholar]
  9. [9]. Nallamothu   BK., , Bradley   EH., , Krumholz   HM. . Time to treatment in primary percutaneous coronary intervention. . New Eng J Med . 2007; ;357: : 1631– 1638 .
    [Google Scholar]
  10. [10]. Huang   RL., , Thomassee   EJ., , Park   JY., , Scott   C., , Maron   DJ., , Fredi   JL. . Clinical pathway: Helicopter scene STEMI protocol to facilitate long-distance transfer for primary PCI. . Crit Pathw Cardiol . 2012; ;11: : 193– 198 .
    [Google Scholar]
  11. [11]. Knudsen   L., , Stengaard   C., , Hansen   TM., , Lassen   JF., , Terkelsen   CJ. . Earlier reperfusion in patients with ST-elevation myocardial infarction by use of helicopter. . Scand J Trauma Resusc Emerg Med . 2012; ;20: : 70 .
    [Google Scholar]
  12. [12]. Dickson   R., , Nedelcut   A., , Seupaul   R., , Hamzeh   M. . STOP STEMI(c)-a novel medical application to improve the coordination of STEMI care: A brief report on door-to-balloon times after initiating the application. . Crit Pathw Cardiol . 2014; ;13: : 85– 88 .
    [Google Scholar]
  13. [13]. Dorsch   MF., , Greenwood   JP., , Priestley   C., , Somers   K., , Hague   C., , Blaxill   JM., , Wheatcroft   SB., , Mackintosh   AF., , McLenachan   JM., , Blackman   DJ. . Direct ambulance admission to the cardiac catheterization laboratory significantly reduces door-to-balloon times in primary percutaneous coronary intervention. . Am Heart J . 2008; ;155: : 1054– 1058 .
    [Google Scholar]
  14. [14]. Pinto   DS., , Kirtane   AJ., , Nallamothu   BK., , Murphy   SA., , Cohen   DJ., , Laham   RJ., , Cutlip   DE., , Bates   ER., , Frederick   PD., , Miller   DP., , Carrozza   JP Jr., , Antman   EM., , Cannon   CP., , Gibson   CM. . Hospital delays in reperfusion for ST-elevation myocardial infarction: Implications when selecting a reperfusion strategy. . Circulation . 2006; ;114: : 2019– 2025 .
    [Google Scholar]
  15. [15]. Soulek   JJ., , Arthur   AO., , Williams   E., , Schieche   C., , Banister   N., , Thomas   SH. . Geographic information software programs' accuracy for interfacility air transport distances and time. . Air Med J . 2014; ;33: : 165– 171 .
    [Google Scholar]
  16. [16]. Meyer   MT., , Gourlay   DM., , Weitze   KC., , Ship   MD., , Drayna   PC., , Werner   C., , Lerner   EB. . Helicopter interfacility transport of pediatric trauma patients: Are we overusing a costly resource?.   J Trauma Acute Care Surg . 2016; ;80: : 313– 317 .
    [Google Scholar]
  17. [17]. Soulek   JJ., , Arthur   A., , Wang   A., , Reimer   AP., , Simmons   M., , Brunko   M., , Thomas   SH. . HEMS transport time savings for ST-elevated myocardial infarctions (abstract). . Circulation . 2014; ;130: : A13837 .
    [Google Scholar]
  18. [18]. Cone   DC., , Landman   AB. . New tools for estimating the EMS transport interval: Implications for policy and patient care. . Acad Emerg Med . 2014; ;21: 1 : 76– 78 .
    [Google Scholar]
  19. [19]. Widener   MJ., , Ginsberg   Z., , Schleith   D., , Floccare   DJ., , Hirshon   JM., , Galvagno   S. . Ground and helicopter emergency medical services time tradeoffs assessed with geographic information. . Aerosp Med Hum Perform . 2015; ;86: : 620– 627 .
    [Google Scholar]
  20. [20]. Walcott   BP., , Coumans   JV., , Mian   MK., , Nahed   BV., , Kahle   KT. . Interfacility helicopter ambulance transport of neurosurgical patients: Observations, utilization, and outcomes from a quaternary care hospital. . PLoS One . 2011; ;6: : e26216 .
    [Google Scholar]
  21. [21]. Rathore   SS., , Curtis   JP., , Chen   J., , Wang   Y., , Nallamothu   BK., , Epstein   AJ., , Krumholz   HM. . Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction: National cohort study. . BMJ . 2009; ;338: : b1807 .
    [Google Scholar]
  22. [22]. Rathore   SS., , Curtis   JP., , Nallamothu   BK., , Wang   Y., , Foody   JM., , Kosiborod   M., , Masoudi   FA., , Havranek   EP., , Krumholz   HM. . Association of door-to-balloon time and mortality in patients > or  65 years with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. . Am J Cardiol . 2009; ;104: : 1198– 1203 .
    [Google Scholar]
  23. [23]. Dauerman   HL., , Bates   ER., , Kontos   MC., , Li   S., , Garvey   JL., , Henry   TD., , Manoukian   SV., , Roe   MT. . Nationwide analysis of patients with ST-segment-elevation myocardial infarction transferred for primary percutaneous intervention: Findings from the American heart association mission: Lifeline program. . Circ Cardiovasc Interv . 2015; ;8: : pii: e002450 .
    [Google Scholar]
  24. [24]. Stowens   JC., , Sonnad   SS., , Rosenbaum   RA. . Using EMS dispatch to trigger STEMI alerts decreases door-to-balloon times. . West J Emerg Med . 2015; ;16: : 472– 480 .
    [Google Scholar]
  25. [25]. Adeoye   O., , Albright   KC., , Carr   BG., , Wolff   C., , Mullen   MT., , Abruzzo   T., , Ringer   A., , Khatri   P., , Branas   C., , Kleindorfer   D. . Geographic access to acute stroke care in the United States. . Stroke . 2014; ;45: : 3019– 3024 .
    [Google Scholar]
  26. [26]. Arthur   A., , Wold   R., , Wanahita   A., , Irfan   FB., , Pathan   S., , Akhtar   N., , Bhutta   Z., , Schuaib   A., , Thomas   SH. . Use of geographical information software to demonstrate clinically important time savings magnitude for air transport of ischemic stroke patients. . Cerebrovasc Dis . 2016; ;41: : 35 .
    [Google Scholar]
  27. [27]. Doumouras   AG., , Gomez   D., , Haas   B., , Boyes   DM., , Nathens   AB. . Comparing methodologies for evaluating emergency medical services ground transport access to time-critical emergency services: A case study using trauma center care. . Acad Emerg Med . 2012; ;19: : E1099– E1108 .
    [Google Scholar]
  28. [28]. Garner   AA., , Mann   KP., , Fearnside   M., , Poynter   E., , Gebski   V. . The Head Injury Retrieval Trial (HIRT): A single-centre randomised controlled trial of physician prehospital management of severe blunt head injury compared with management by paramedics only. . EMJ . 2015; ;32: 11 : 869– 875 .
    [Google Scholar]
  29. [29]. Brown   JB., , Gestring   ML., , Stassen   NA., , Forsythe   RM., , Billiar   TR., , Peitzman   AB., , Sperry   JL. . Geographic variation in outcome benefits of helicopter transport for trauma in the United States: A retrospective cohort study. . Ann Surg . 2016; ;263: : 406– 412 .
    [Google Scholar]
  30. [30]. van der Pols   H., , Mencl   F., , de Vos   R. . The impact of an emergency motorcycle response vehicle on prehospital care in an urban area. . Eur J Emerg Med . 2011; ;18: : 328– 333 .
    [Google Scholar]
  31. [31]. Svenson   J., , O'Connor   J., , Lindsay   M. . Is air transport faster? A comparison of air versus ground transport times for interfacility transfers in a regional referral system. . Air Med J . 2006; ;24: : 170– 172 .
    [Google Scholar]
  32. [32]. Brown   L., , Arthur   A., , Keeling   C., , Yuhas   C., , Thomas   SH. . Establishing benchmarks for helicopter EMS patient stabilization times in interfacility transport for primary percutaneous coronary intervention. . Int J Clin Med . 2012; ;3: : 765– 768 .
    [Google Scholar]
  33. [33]. Shatney   C., , Homan   J., , Sherck   J., , Ho   C-C. . The utility of helicopter transport of trauma patients from the injury scene in an urban trauma system. . J Trauma . 2002; ;53: : 817– 822 .
    [Google Scholar]
  34. [34]. Thomas   SH., , Arthur   AO. . Helicopter EMS: Research endpoints and potential benefits. . Emerg Med Int . 2012; ;2012: : 698562 .
    [Google Scholar]
  35. [35]. Thomas   SH., , Schwamm   LH., , Lev   MH. . Case records of the Massachusetts General Hospital. Case 16-2006. A 72-year-old woman admitted to the emergency department because of a sudden change in mental status. . N Engl J Med . 2006; ;354: : 2263– 2271 .
    [Google Scholar]
  36. [36]. Delgado   MK., , Staudenmayer   KL., , Wang   NE., , Spain   DA., , Weir   S., , Owens   DK., , Goldhaber-Fiebert   JD. . Cost-effectiveness of helicopter versus ground emergency medical services for trauma scene transport in the United States. . Ann Emerg Med . 2013; ;62: : 351– 364 , e19 .
    [Google Scholar]
  37. [37]. Nichol   G., , Huszti   E., , Birnbaum   A., , Mahoney   B., , Weisfeldt   M., , Travers   A., , Christenson   J., , Kuntz   K., , PAD Investigators. . Cost-effectiveness of lay responder defibrillation for out-of-hospital cardiac arrest. . Ann Emerg Med . 2009; ;54: : 226– 235 , e1-2 .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/jemtac.2017.8
Loading
/content/journals/10.5339/jemtac.2017.8
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Air medical transport , helicopter EMS , logistics and STEMI
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error