1887
Volume 2025, Issue 2
  • EISSN: 2223-506X

Abstract

For centuries, camel milk has been a dietary staple across the Middle East, North Africa, and Central Asia, particularly when it is fermented to extend its shelf life and improve its nutritional value. Its probiotic characteristics increased nutrient bioavailability, and potential medicinal applications have driven growing scientific interest in fermented camel milk. The purpose of this study is to examine both conventional and modern fermentation methods, evaluate their effects on microbial diversity, and assess the possible health advantages of fermented camel milk, especially in treating intestinal dysbiosis. Our study examines fermentation techniques from various regions, emphasizing natural processes that depend on ambient microorganisms. The contribution of contemporary methods that use stabilizers and regulated starter cultures in enhancing product safety and consistency is also investigated. According to research, fermented camel milk improves microbial balance, decreases the growth of harmful microbes, and promotes beneficial microbes, all of which contribute to gut health. Certain probiotic bacteria isolated from camel milk show promise for therapeutic use and functional probiotic foods, especially in treating metabolic diseases like diabetes. In conclusion, while traditional fermentation methods remain integral to cultural heritage, modern advancements offer improved safety and efficacy in camel milk fermentation. Further clinical studies are required to validate its health benefits and develop standardized fermentation protocols for broader applications in functional nutrition and medicine.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2025.10
2025-12-10
2025-12-14

Metrics

Loading full text...

Full text loading...

/deliver/fulltext/connect/2025/2/connect.2025.issue2.10.html?itemId=/content/journals/10.5339/connect.2025.10&mimeType=html&fmt=ahah

References

  1. Ahmed AI, Blanchard L, Abdelhadi OM, Bakheit SA, Faye B. Statistical analysis of traditional practices of fermented camel milk in North Kordofan State, Sudan. 2014.
  2. Kalam Saleena LA, Phing PL, Gan RY, Al-Nabulsi A, Osaili T, Kamal-Eldin A, et al. Fermented dairy products from Middle Eastern and Northern African (MENA) countries: Insight on production and physiochemical characteristics. Int Dairy J. 2023 Jun;141:105614.
    [Google Scholar]
  3. Magdi O, Abdel Rahman Ibrahim, Dirar Hamid. Biochemical changes occurring during fermentation of camel milk by selected bacterial starter cultures.
    [Google Scholar]
  4. Paradise JL. Epstein, H. THE ORIGIN OF THE DOMESTICATED ANIMALS OF AFRICA. Africana Publ. Corp., New York, London, Munich, 1:1-573, 2:1-719, 1971. J Mammal. 1973 Apr 26;54(1):3056.
    [Google Scholar]
  5. Bulliet RW. The camel and the wheel. Cambridge, Mass: Harvard University Press; 1975. 327 p.
    [Google Scholar]
  6. Yagil R. Camels and camel milk. Rome: FAO; 1982. (FAO animal production and health paper).
    [Google Scholar]
  7. Ait El Alia, O., Zine-Eddine, Y., Chaji, S., Boukrouh, S., Boutoial, K., & Faye, B. (2025). Global camel milk industry: A comprehensive overview of production, consumption trends, market evolution, and value chain efficiency. Small Ruminant Research, 243:, 107441. https://doi.org/10.1016/j.smallrumres.2025.107441
    [Google Scholar]
  8. Khaliq, A., Mishra, A. K., Niroula, A., Baba, W. N., Shaukat, M. N., & Rabbani, A.. (2024). An updated comprehensive review of camel milk: Composition, therapeutic properties, and industrial applications. Food Bioscience, 62:, 105531. https://doi.org/10.1016/j.fbio.2024.105531
    [Google Scholar]
  9. Oselu, S., Ebere, R., & Arimi, J. M. (2022). Camels, Camel Milk, and Camel Milk Product Situation in Kenya in Relation to the World. International Journal of Food Science, 2022, 1237423. https://doi.org/10.1155/2022/1237423
    [Google Scholar]
  10. Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO) Discussion paper on the development of new work on a camel milk commodity standard (CAC47/CRD03). Geneva: Codex Alimentarius Commission; 2024 https://www.fao.org/fao-who-codexalimentarius/sh-proxy/ru/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-701-47%252FCRDs%252FCRD03%252Fcac47_crd03e.pdf
  11. Smits, M., Joosten, H., Faye, B., & Burger, P. A. (2022). The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals : An Open Access Journal From MDPI, 13:(1), 47. https://doi.org/10.3390/ani13010047
    [Google Scholar]
  12. Alhassani, W. E. (2024). Camel milk: Nutritional composition, therapeutic properties, and benefits for human health. Open Veterinary Journal, 14:(12), 3164. https://doi.org/10.5455/OVJ.2024.v14.i12.2
    [Google Scholar]
  13. Hamed, N. S., Mbye, M., Ayyash, M., & Ulusoy, B. H. (2023). Camel Milk: Antimicrobial Agents, Fermented Products, and Shelf Life. Foods, 13:(3), 381. https://doi.org/10.3390/foods13030381
    [Google Scholar]
  14. Alhamdan AM, Al Juhaimi FY, Hassan BH, Ehmed KA, Mohamed Ahmed IA. Physicochemical, Microbiological, and Sensorial Quality Attributes of a Fermented Milk Drink (Laban) Fortified with Date Syrup (Dibs) during Cold Storage. Foods. 2021 Dec 20;10:(12):3157.
    [Google Scholar]
  15. Ali AH, Li S, Liu SQ, Gan RY, Li HB, Kamal-Eldin A, et al. Invited review: Camel milk and gut health-Understanding digestibility and the effect on gut microbiota. J Dairy Sci. 2024 May;107:(5):257385.
    [Google Scholar]
  16. Manaer T, Yu L, Nabi XH, Dilidaxi D, Liu L, Sailike J. The beneficial effects of the composite probiotics from camel milk on glucose and lipid metabolism, liver and renal function and gut microbiota in db/db mice. BMC Complement Med Ther. 2021 Dec;21:(1):127.
    [Google Scholar]
  17. Sawaya WN,Khalil JK, Al-Shalhat A, Al-Mohammad H. Chemical Composition and Nutritional Quality of Camel Milk. J Food Sci. 1984 May;49:(3):7447.
    [Google Scholar]
  18. Shahein MR, Atwaa ES, Elkot WF, Hijazy HH, Kassab RB, Alblihed, MA, Elmahallawy EK. The impact of date syrup on the physicochemical, microbiological, and sensory properties, and antioxidant activity of bio-fermented camel milk. Fermentation. 2022 May;8:(5):192.
    [Google Scholar]
  19. Malik A, Al-Senaidy A, Skrzypczak-Jankun E, Jankun J. A study of the anti-diabetic agents of camel milk. Int J Mol Med. 2012 Sep 1;30:(3):58592.
    [Google Scholar]
  20. Saibhavana S, Vasukhi SM, Shreya R, Rajakumari R, Abhijith AS, Adithya KS, Gautam P, Raida, Abhirami VN, Aishwarya P, Pran M. Prospective nutritional, therapeutic, and dietary benefits of camel milk making it a viable option for human consumption: current state of scientific knowledge. J Exp Biol Agric Sci. 2023 Apr 30;11:(2):23650.
    [Google Scholar]
  21. Muthukumaran MS, Mudgil P, Baba WN, Ayoub MA, Maqsood S. A comprehensive review on health benefits, nutritional composition and processed products of camel milk. Food Rev Int. 2023 Aug 18;39:(6):3080116.
    [Google Scholar]
  22. Mudgil P, Alkaabi A, Maqsood S. Ultrasonication as a novel processing alternative to pasteurization for camel milk: Effects on microbial load, protein profile, and bioactive properties. J Dairy Sci. 2022 Aug;105:(8):654862.
    [Google Scholar]
  23. Bouhaddaoui S Chabir R Errachidi F El Ghadraoui L El Khalfi B Benjelloun M, et al. Study of the Biochemical Biodiversity of Camel Milk. Sci World J. 2019 Apr 9;2019:1-7.
    [Google Scholar]
  24. Rahmeh R, Akbar A, Alomirah H, Kishk M, Al-Ateeqi A, Al-Milhm S, et al. Camel milk microbiota: A culture-independent assessment. Food Res Int. 2022 Sep 1;159:111629.
    [Google Scholar]
  25. Tarrah A, Callegaro S, Pakroo S, Finocchiaro R, Giacomini A, Corich V, et al. New insights into the raw milk microbiota diversity from animals with a different genetic predisposition for feed efficiency and resilience to mastitis. Sci Rep. 2022 Aug 5;12:(1):13498.
    [Google Scholar]
  26. Yasmin I, Saeed M, Khan WA, Khaliq A, Chughtai MFJ, Iqbal R, et al. In Vitro Probiotic Potential and Safety Evaluation (Hemolytic, Cytotoxic Activity) of Bifidobacterium Strains Isolated from Raw Camel Milk. Microorganisms. 2020 Mar 2;8:(3):354.
    [Google Scholar]
  27. Balivo A, Sacchi R, Genovese A. The Noble Method in the dairy sector as a sustainable production system to improve the nutritional composition of dairy products: A review. Int J Dairy Technol. 2023 May;76:(2):31328.
    [Google Scholar]
  28. Yuan H, Han S, Zhang S, Xue Y, Zhang Y, Lu H, et al. Microbial Properties of Raw Milk throughout the Year and Their Relationships to Quality Parameters. Foods. 2022 Oct 4;11:(19):3077.
    [Google Scholar]
  29. Li N, Wang Y, You C, Ren J, Chen W, Zheng H, et al. Variation in Raw Milk Microbiota Throughout 12 Months and the Impact of Weather Conditions. Sci Rep. 2018 Feb 5;8:(1):2371.
    [Google Scholar]
  30. Hrncir T, Hrncirova L, Kverka M, Tlaskalova-Hogenova H. The role of gut microbiota in intestinal and liver diseases. Lab Anim. 2019 Jun;53:(3):27180.
    [Google Scholar]
  31. Wen L, Duffy A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J Nutr. 2017 Jul;147:(7):1468S1475S.
    [Google Scholar]
  32. Feigin VL, Vos T, Alahdab F, Amit AM, BM-drnighausen TW, Beghi E, Beheshti M, Chavan PP, Criqui MH, Desai R, Dharmaratne SD. Burden of neurological disorders across the US from 1990-2017: a global burden of disease study. JAMA neurology. 2021 Feb 1;78:(2):16576.
    [Google Scholar]
  33. Hrncir T. Gut Microbiota Dysbiosis: Triggers, Consequences, Diagnostic and Therapeutic Options. Microorganisms. 2022 Mar 7;10:(3):578.
    [Google Scholar]
  34. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021 Jan;19:(1):5571.
    [Google Scholar]
  35. Elagamy EI. Effect of heat treatment on camel milk proteins with respect to antimicrobial factors: a comparison with cows’ and buffalo milk proteins. Food Chem. 2000 Feb 1;68:(2):22732.
    [Google Scholar]
  36. Mehaia MA, Hablas MA, Abdel-Rahman KM, El-Mougy SA. Milk composition of Majaheim, Wadah and Hamra camels in Saudi Arabia. Food Chem. 1995 Jan 1;52:(2):11522.
    [Google Scholar]
  37. Wang L, Wu T, Zhang Y, Yang K, He Y, Deng K, Liang C, Gu, Y. Comparative studies on the nutritional and physicochemical properties of yoghurts from cows’, goats’, and camels’ milk powder. International Dairy Journal. 2023 Mar 1;138:105542.
    [Google Scholar]
  38. Agrawal RP, Budania S, Sharma P, Gupta R, Kochar DK, Panwar RB, et al. Zero prevalence of diabetes in camel milk consuming Raica community of north-west Rajasthan, India. Diabetes Res Clin Pract. 2007 May;76:(2):2906.
    [Google Scholar]
  39. Fallah Z, Feizi A, Hashemipour M, Kelishadi R. Effect of fermented camel milk on glucose metabolism, insulin resistance, and inflammatory biomarkers of adolescents with metabolic syndrome: A double-blind, randomized, crossover trial. J Res Med Sci. 2018;23:(1):32.
    [Google Scholar]
  40. Vimont A, Fernandez B, Hammami R, Ababsa A, Daba H, Fliss I. Bacteriocin-producing Enterococcus faecium LCW 44: a high potential probiotic candidate from raw camel milk. Frontiers in microbiology. 2017 May 18;8:865.
    [Google Scholar]
  41. Izadi A, Khedmat L, Mojtahedi SY. Nutritional and therapeutic perspectives of camel milk and its protein hydrolysates: A review on versatile biofunctional properties. Journal of Functional Foods. 2019 Sep;60:103441
    [Google Scholar]
  42. Park YW. Milk and Dairy Products in Human Nutrition: Production, Composition and Health. 1st ed. Somerset: John Wiley & Sons, Incorporated; 2013.
    [Google Scholar]
  43. Swelum AA,Abdo M, Ombarak RA, Hussein EOS, Suliman G, et al. Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. Saudi Journal of Biological Sciences. 2021 May;28:(5):312636.
    [Google Scholar]
  44. Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ. Bactericidal Activity of Human Lactoferrin: Differentiation from the Stasis of Iron Deprivation. Infect Immun. 1982 Mar;35:(3):7929.
    [Google Scholar]
  45. Baothman O, Ali EMM, Alguridi H, Hosawi S, Konozy EHE, Abu Zeid IM, et al. Impact of camel milk lactoferrin peptides against breast cancer cells: in silico and in vitro study. Front Pharmacol. 2024 Nov 19;15:1425504.
    [Google Scholar]
  46. Shaban AM, Raslan M, Sharawi ZW, Abdelhameed MS, Hammouda O, El-Masry HM, et al. Antibacterial, Antifungal, and Anticancer Effects of Camel Milk Exosomes: An in vitro Study. Veterinary Sciences. 2023 Feb 6;10:(2):124.
    [Google Scholar]
  47. Konuspayeva, G., Faye, B., Loiseau, G., & Levieux, D. (2006). Lactoferrin and Immunoglobulin Contents in Camel’s Milk (Camelus bactrianus, Camelus dromedarius, and Hybrids) from Kazakhstan. Journal of Dairy Science, 90:(1), 3846. https://doi.org/10.3168/jds.S0022-0302(07)72606-1
    [Google Scholar]
  48. Behrouz S, Saadat S, Memarzia A, Sarir H, Folkerts G, Boskabady MH. The Antioxidant, Anti-Inflammatory and Immunomodulatory Effects of Camel Milk. Front Immunol. 2022 Apr 12;13:855342.
    [Google Scholar]
  49. Shawki A,Abd El-Baky N, Ahmed M, Linjawi MH, Aljaddawi AA, Redwan EM. Simple Protocol for immunoglobulin G Purification from Camel "Camelus dromedarius" Serum. Open Life Sciences. 2017 May 4;12:(1):14355.
    [Google Scholar]
  50. Al-Baarri AN, Legowo AM, Arum SK, Hayakawa S. Extending Shelf Life of Indonesian Soft Milk Cheese (Dangke) by Lactoperoxidase System and Lysozyme. International Journal of Food Science. 2018 May 31;2018:17
    [Google Scholar]
  51. Vermassen A, Leroy S, Talon R, Provot C, Popowska M, Desvaux M. Cell Wall Hydrolases in Bacteria: Insight on the Diversity of Cell Wall Amidases, Glycosidases and Peptidases Toward Peptidoglycan. Front Microbiol. 2019 Feb 28;10:7331.
    [Google Scholar]
  52. Barbour, E. K., Nabbut, N. H., Frerichs, W. M., & Al-Nakhli, H. M. (1984). Inhibition of pathogenic bacteria by camel’s milk: relation to whey lysozyme and stage of lactation. Journal of Food Protection, 47:(11), 838840. https://doi.org/10.4315/0362-028x-47.11.838
    [Google Scholar]
  53. Almasri RS, Bedir AS, Ranneh YK, El-Tarabily KA, Al Raish SM. Benefits of Camel Milk over Cow and Goat Milk for Infant and Adult Health in Fighting Chronic Diseases: A Review. Nutrients. 2024 Nov 10;16:(22):3848.
    [Google Scholar]
  54. He J, Guo K, Chen Q, Wang Y, Jirimutu Camel milk modulates the gut microbiota and has anti-inflammatory effects in a mouse model of colitis. Journal of Dairy Science. 2022 May;105:(5):378293.
    [Google Scholar]
  55. Ahmed AA, Saad NM, Wahba NM, Sayed RG. Nutritional value and antioxidant activity of camel’s milk. Journal of Advanced Veterinary Research. 2018 Oct 2;8:(4):904.
    [Google Scholar]
  56. Ibrahim SIO, Awadelkareem AM, Ashraf SA, Sabahelkhier. MK. Comparative studies on the physicochemical and microbiological characteristics of different animal milk collected from the farms of Khartoum State, Sudan. Biosci Biotech Res Comm. 2018 Sep 25;11:(3):38792
    [Google Scholar]
  57. Wang Y, Liang Z, Shen F, Zhou W, Manaer T, Jiaerken D, et al. Exploring the immunomodulatory effects and mechanisms of Xinjiang fermented camel milk-derived bioactive peptides based on network pharmacology and molecular docking. Front Pharmacol. 2023 Jan 4;13:1038812
    [Google Scholar]
  58. Abu-Qatouseh L, Mallah E, Mansour K. Evaluation of Anti-Propionibacterium Acnes and Anti-Inflammatory Effects of Polyphenolic Extracts of Medicinal Herbs in Jordan. Biomed Pharmacol J. 2019 Mar 28;12:(1):2117.
    [Google Scholar]
  59. Shukla P, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, et al. Antidiabetic, angiotensin-converting enzyme inhibitory and anti-inflammatory activities of fermented camel milk and characterisation of novel bioactive peptides from lactic-fermented camel milk with molecular interaction study. Int J of Dairy Tech. 2023 Feb;76:(1):14967.
    [Google Scholar]
  60. Quigley L,O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. The complex microbiota of raw milk. FEMS Microbiol Rev. 2013 Sep;37:(5):66498.
    [Google Scholar]
  61. Kable ME, Srisengfa Y, Laird M, Zaragoza J, McLeod J, Heidenreich J, et al.. The Core and Seasonal Microbiota of Raw Bovine Milk in Tanker Trucks and the Impact of Transfer to a Milk Processing Facility. Bailey MJ, editor. mBio. 2016 Sep 7;7(4):e0083
    [Google Scholar]
  62. Arain MA, Salman HM, Ali M, Khaskheli GB, Barham GS, Marghazani IB, Ahmed S. A review on camel milk composition, techno-functional properties and processing constraints. Food Science of Animal Resources. 2024 Jul 1;44:(4):739.
    [Google Scholar]
  63. Ishii, Satomi, andSabyr Nurtazin “Properties of Camel Milk Liquor (‘Shubat’) in the Republic of Kazakhstan.„ Milk Science, vol. 63:, no. 2, 2014, pp. 5562, https://doi.org/10.11465/milk.63.55.
    [Google Scholar]
  64. Ishii, Satomi, and Kunihiko Samejima “Products Made from Camel’s Milk by Mongolian Nomads.„ Milk Science, vol. 55:, no. 2, 2006, https://www.jstage.jst.go.jp/article/milk/55/2/55_79/_pdf/-char/ja.
    [Google Scholar]
  65. Abdelgadir, W. S., et al. “The Traditional Fermented Milk Products of the Sudan.„ International Journal of Food Microbiology, vol. 44:, no. 1-2, Oct. 1998, pp. 113, https://doi.org/10.1016/s0168-1605(98)00090-7.
    [Google Scholar]
  66. Biratu, K., and E. Seifu “Chemical Composition and Microbiological Quality of Dhanaan: Traditional Fermented Camel Milk Produced in Eastern Ethiopia.„ International Food Research Journal, vol. 23:, no. 5, 2016, pp. 222328, http://ifrj.upm.edu.my/23%20(05)%20 2016/(52).pdf.
    [Google Scholar]
  67. AlaouiIsmaili, M., et al. “Making of Pasteurized Lfrik (Fermented Moroccan Camel Milk) by Selected Lactic Starters.„ Revue Marocaine Des Sciences Agronomiques et Vét#x00E9;rinaires, vol. 6:, no. 3, 2018, pp. 27782, https://core.ac.uk/download/230580388.pdf.
    [Google Scholar]
  68. Konuspayeva, Gaukhar, and Bernard Faye “"Recent Advances in Camel Milk Processing.„ Animals, vol. 11:, no. 4, Apr. 2021, p. 1045, https://doi.org/10.3390/ani11041045.\
    [Google Scholar]
  69. Oselu S, Ebere R, Huka G, Musalia L, Marete E, Mathara JM, et al. Production and characterisation of camel milk yoghurt containing different types of stabilising agents. Heliyon. 2022 Nov 1;8:(11):e11816.
    [Google Scholar]
  70. Shori AB,Al-Sulbi OS. Antioxidant activity of labneh made from cashew milk and its combination with cow or camel milk using different starter cultures. J Food Sci Technol. 2023 Feb;60:(2):7019.
    [Google Scholar]
  71. Alharbi YM, El-Zahar KM, Mousa HM. Beneficial Effects of Fermented Camel and Cow’s Milk in Lipid Profile, Liver, and Renal Function in Hypercholesterolemic Rats. Fermentation. 2022 Apr 8;8:(4):171.
    [Google Scholar]
  72. Algonaiman R, Alharbi HF. Development of Fermented Camel Milk Incorporating Oats and Sukkari Date Palm Fruit: Nutritional, Physicochemical, Functional, and Organoleptic Attributes. Fermentation. 2023 Oct;9:(10):864.
    [Google Scholar]
  73. Tamboli CP. Dysbiosis in inflammatory bowel disease. Gut. 2004 Jan 1;53:(1):14.
    [Google Scholar]
  74. Dahiya D, Nigam PS. Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. IJMS. 2023 Feb 4;24:(4):3074.
    [Google Scholar]
  75. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009 May;9:(5):31323.
    [Google Scholar]
  76. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012 Jan;3:(1):414.
    [Google Scholar]
  77. Krajmalnik-Brown R, Ilhan Z, Kang D, DiBaise JK. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nut in Clin Prac. 2012 Apr;27:(2):20114.
    [Google Scholar]
  78. Bandopadhyay P, Ganguly D. Gut dysbiosis and metabolic diseases. Progress in molecular biology and translational science. 2022 Jan 1;191:(1):15374.
    [Google Scholar]
  79. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go? The Journal of Nutritional Biochemistry. 2019 Jan;63:1018.
    [Google Scholar]
  80. Li X, Watanabe K, Kimura I. Gut Microbiota Dysbiosis Drives and Implies Novel Therapeutic Strategies for Diabetes Mellitus and Related Metabolic Diseases. Front Immunol. 2017 Dec 20;8:1882.
    [Google Scholar]
  81. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006 Dec 21;444:(7122):10223.
    [Google Scholar]
  82. Singh R, Zogg H, Wei L, Bartlett A, Ghoshal UC, Rajender S, et al. Gut Microbial Dysbiosis in the Pathogenesis of Gastrointestinal Dysmotility and Metabolic Disorders. J Neurogastroenterol Motil. 2021 Jan 30;27:(1):1934
    [Google Scholar]
  83. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012 Oct;490:(7418):5560.
    [Google Scholar]
  84. Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol. 2020 Jan 31;11:25.
    [Google Scholar]
  85. Deleu S, Machiels K, Raes J, Verbeke K, Vermeire S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? eBioMedicine. 2021 Apr;66:103293.
    [Google Scholar]
  86. Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015 Oct;11:(10):57791.
    [Google Scholar]
  87. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits. Cell. 2014 Jan;156:(1-2):8496.
    [Google Scholar]
  88. Liu L, Yi Y, Yan R, Hu R, Sun W, Zhou W, et al. Impact of age-related gut microbiota dysbiosis and reduced short-chain fatty acids on the autonomic nervous system and atrial fibrillation in rats. Front Cardiovasc Med. 2024 Jun 12;11:1394929.
    [Google Scholar]
  89. Opeyemi OM, Rogers MB, Firek BA, Vagni V, Mullett SJ, et al. Sustained Dysbiosis and Decreased Fecal Short-Chain Fatty Acids after Traumatic Brain Injury and Impact on Neurologic Outcome. Journal of Neurotrauma. 2021 Sep 15;38:(18):261021.
    [Google Scholar]
  90. Mishra SP, Wang B, Jain S, Ding J, Rejeski J, Furdui CM, et al. A mechanism by which gut microbiota elevates permeability and inflammation in obese/diabetic mice and human gut. Gut. 2023 Oct;72:(10):184865.
    [Google Scholar]
  91. Chakaroun R, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020 Apr 14;12:(4):1082.
    [Google Scholar]
  92. Ullah H, Arbab S, Tian Y, Chen Y, C qing, Li Q, et al. Crosstalk between gut microbiota and host immune system and its response to traumatic injury. Front Immunol. 2024 Jul 31;15:1413485.
    [Google Scholar]
  93. Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016 Jul 7;535:(7610):7584.
    [Google Scholar]
  94. Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. Potential Role of Gut Microbiota in Induction and Regulation of Innate Immune Memory. Front Immunol. 2019 Oct 25;10:2441.
    [Google Scholar]
  95. Frank DN,Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007 Aug 21;104:(34):137805.
    [Google Scholar]
  96. Sun Y, Li L, Xia Y, Li W, Wang K, Wang L, et al. The gut microbiota heterogeneity and assembly changes associated with the IBD. Sci Rep. 2019 Jan 24;9:(1):440.
    [Google Scholar]
  97. Chang SH, Choi Y. Gut dysbiosis in autoimmune diseases: Association with mortality. Front Cell Infect Microbiol. 2023 Mar 31;13:1157918.
    [Google Scholar]
  98. Gieryńska M, Szulc-Dąbrowska L, Struzik J, Mielcarska MB, Gregorczyk-Zboroch KP. Integrity of the Intestinal Barrier: The Involvement of Epithelial Cells and Microbiota—A Mutual Relationship. Animals. 2022 Jan 8;12:(2):145.
    [Google Scholar]
  99. Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr. 2023 Mar 2;10:1120168.
    [Google Scholar]
  100. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Stärkel P, Windey K, Tremaroli V, Bäckhed F, Verbeke K, de Timary P. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proceedings of the National Academy of Sciences. 2014 Oct 21;111:(42):E4485-93.
    [Google Scholar]
  101. Page MJ, Kell DB, Pretorius E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. Chronic Stress. 2022 Jan;6:24705470221076390.
    [Google Scholar]
  102. Fasano A. Leaky Gut and Autoimmune Diseases. Clinic Rev Allerg Immunol. 2012 Feb;42:(1):718.
    [Google Scholar]
  103. Zhang C, Li G, Lu T, Liu L, Sui Y, Bai R, et al. The Interaction of Microbiome and Pancreas in Acute Pancreatitis. Biomolecules. 2023 Dec 31;14:(1):59
    [Google Scholar]
  104. Chen L, Liu B, Ren L, Du H, Fei C, Qian C, et al. High-fiber diet ameliorates gut microbiota, serum metabolism and emotional mood in type 2 diabetes patients. Front Cell Infect Microbiol. 2023 Jan 30;13:1069954.
    [Google Scholar]
  105. Huang C, Feng S, Huo F, Liu H. Effects of Four Antibiotics on the Diversity of the Intestinal Microbiota. Kovac J, editor. Microbiol Spectr. 2022 Apr 27;10(2):e01904-21.
    [Google Scholar]
  106. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 2015 Mar 5;519:(7541):926.
    [Google Scholar]
  107. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014 Oct;514:(7521):1816.
    [Google Scholar]
  108. Fragiadakis GK, Wastyk HC, Robinson JL, Sonnenburg ED, Sonnenburg JL, Gardner CD. Long-term dietary intervention reveals resilience of the gut microbiota despite changes in diet and weight. The American Journal of Clinical Nutrition. 2020 Jun;111:(6):112736.
    [Google Scholar]
  109. Jaramillo AP, Awosusi BL, Ayyub J, Dabhi KN, Gohil NV, Tanveer N, Hussein S, Pingili S, Makkena VK. Effectiveness of fecal microbiota transplantation treatment in patients with recurrent clostridium difficile infection, ulcerative colitis, and crohn’s disease: A systematic review. Cureus. 2023 Jul 19;15:(7).
    [Google Scholar]
  110. Park SY,Seo GS. Fecal Microbiota Transplantation: Is It Safe? Clin Endosc. 2021 Mar 30;54:(2):15760.
    [Google Scholar]
  111. Rapoport EA, Baig M, Puli SR. Adverse events in fecal microbiota transplantation: a systematic review and meta-analysis. Annals of gastroenterology. 2022 Feb 14;35:(2):150.
    [Google Scholar]
  112. Le Barz M, Anhê FF, Varin TV, Desjardins Y, Levy E, Roy D, et al. Probiotics as Complementary Treatment for Metabolic Disorders. Diabetes Metab J. 2015;39:(4):291.
    [Google Scholar]
  113. Azad MdAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BioMed Research International. 2018;2018:18.
    [Google Scholar]
  114. Liu Y, Wang J, Wu C. Modulation of Gut Microbiota and Immune System by Probiotics, Pre-biotics, and Post-biotics. Front Nutr. 2022 Jan 3;8:634897.
    [Google Scholar]
  115. Pujari R, Banerjee G. Impact of prebiotics on immune response: from the bench to the clinic. Immunol Cell Biol. 2021 Mar;99:(3):25573
    [Google Scholar]
  116. Sheridan PO, Bindels LB, Saulnier DM, Reid G, Nova E, Holmgren K, et al. Can prebiotics and probiotics improve therapeutic outcomes for undernourished individuals? Gut Microbes. 2014 Jan;5:(1):7482.
    [Google Scholar]
  117. Manaer T, Sailike J, Sun X, Yeerjiang B, Nabi X. Therapeutic effects of composite probiotics derived from fermented camel milk on metabolic dysregulation and intestinal barrier integrity in type 2 diabetes rats. Front Pharmacol. 2025 Jan 7;15:1520158.
    [Google Scholar]
  118. Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S, et al. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019 Mar 9;8:(3):92
    [Google Scholar]
/content/journals/10.5339/connect.2025.10
Loading
/content/journals/10.5339/connect.2025.10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error