1887
Volume 2014, Issue 1
  • E-ISSN: 2223-506X

Abstract

Imatinib is failing as a first line treatment in more than 40% of chronic myeloid leukemia (CML) patients in Qatar. We thus investigated kinase domain mutations and additional chromosomal abnormalities (ACAs) as underlying mechanisms to explain this high rate of treatment failure. Between November 2006 and December 2011, all CML patients in Qatar were studied for kinase domain mutations and ACAs. Total RNA was extracted and cDNA was produced via reverse transcriptase polymerase chain reaction (RT-PCR). PCR was used with special precautions to avoid amplification of wild type ; the kinase domain was then screened for mutations by direct DNA sequencing technology to detect the emergence of mutant clone.

Cytogenetic analysis of bone marrow (BM) metaphases and fluorescence hybridization (FISH) of peripheral blood (PB) and BM interphases were performed according to standard protocols. European Leukemia Net (ELN) response criteria were employed to identify the failing cases. 26 out of 33 CML patients were eligible for the study, 22 CP and 4 AP. 14 failed Imatinib treatment, 2 had kinase domain mutations; one patient had the G1739A mutation which leads to the exchange of glutamic acid at position 459 to lysine (E459K) (rs1064156) in the c-terminal loop while the other patient had a unique insertion of three nucleotides (AAG) at position 1432 which adds an amino acid Lysine to position 356 of the catalytic domain and a complex karyotyping at diagnosis, 6 had additional chromosomal abnormalities as an underlying mechanism of resistance, 4 patients had no identifiable cause of resistance and 2 patients were intolerant to treatment. There was a significant difference in median overall survival between patients with Ph chromosome only and patients with ACAs. In this study as we continued observing CML patients for nearly 5 years, the Imatinib failure reached as high as 54%. The resistance rate observed in Qatar is still higher than that reported by the IRIS study which is as high as 35%. In our cohort of CML patients, point mutation and unique tri-nucleotide insertions were identified. However, these mutations could explain only 14% of treatment failure. Additional chromosomal abnormalities were the most common cause of Imatinib failure in our patients' cohort and were documented in 50% of cases. 14% of patients stopped IM due to intolerance; and the mechanisms of resistance remained unknown in 28% of patients. Other causes such as patients' adherence to Imatitinb is being prospectively investigated.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2014.13
2014-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/connect/2014/1/connect.2014.13.html?itemId=/content/journals/10.5339/connect.2014.13&mimeType=html&fmt=ahah

References

  1. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96:10:33433356.
    [Google Scholar]
  2. Kurzrock R, Kantarjian HM, Druker BJ, Talpaz M. Philadelphia chromosome-positive leukemias: from basic mechanisms to molecular therapeutics. Ann Intern Med. 2003; 138:10:819830.
    [Google Scholar]
  3. Deininger MW, Vieira S, Mendiola R, Schultheis B, Goldman JM, Melo JV. BCR-ABL tyrosine kinase activity regulates the expression of multiple genes implicated in the pathogenesis of chronic myeloid leukemia. Cancer Res. 2000; 60:7:20492055.
    [Google Scholar]
  4. Shet AS, Jahagirdar BN, Verfaillie CM. Chronic myelogenous leukemia: mechanisms underlying disease progression. Leukemia. 2002; 16:8:14021411.
    [Google Scholar]
  5. Calabretta B, Perrotti D. The biology of CML blast crisis. Blood. 2004; 103:11:40104022.
    [Google Scholar]
  6. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest. 2000; 105:1:37.
    [Google Scholar]
  7. Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002; 1:7:493502.
    [Google Scholar]
  8. de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, Bua M, Szydlo R, Olavarria E, Kaeda J, Goldman JM, Marin D. Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol. 2008; 26:20:33583363.
    [Google Scholar]
  9. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, Cornelissen JJ, Fischer T, Hochhaus A, Hughes T, Lechner K, Nielsen JL, Rousselot P, Reiffers J, Saglio G, Shepherd J, Simonsson B, Gratwohl A, Goldman JM, Kantarjian H, Taylor K, Verhoef G, Bolton AE, Capdeville R, Druker BJ, IRIS Investigators . Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003; 348:11:9941004.
    [Google Scholar]
  10. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA, IRIS Investigators . Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006; 355:23:24082417.
    [Google Scholar]
  11. O'Brien SG, Guilhot F, Goldman JM, Hochhaus A, Hughes TP, Radich JP, Rudoltz M, Filian J, Gathmann I, Druker BJ, Larson RA. International Randomized Study of Interferon versus STI571 (IRIS) 7-year follow-up: sustained survival, low rate of transformation and increased rate of major molecular response (MMR) in patients (pts) with newly diagnosed chronic myeloid leukemia in chronic phase (CML-CP) treated with imatinib (IM). Blood. 2008; 112::76.
    [Google Scholar]
  12. Deininger MW, Holyoake TL. Can we afford to let sleeping dogs lie? Blood. 2005; 105:5:18401841.
    [Google Scholar]
  13. Quintas-Cardama A, Kantarjian HM, Cortes JE. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control. 2009; 16:2:122131.
    [Google Scholar]
  14. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007; 8:11:10181029.
    [Google Scholar]
  15. Apperley JF. Part II: management of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007; 8:12:11161128.
    [Google Scholar]
  16. Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res. 2009; 15:24:75197527.
    [Google Scholar]
  17. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K, Herrmann R, Lynch KP, Hughes TP. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood. 2002; 99:9:34723475.
    [Google Scholar]
  18. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, Sawyers CL. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002; 2:2:117125.
    [Google Scholar]
  19. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002; 16:11:21902196.
    [Google Scholar]
  20. von Bubnoff N, Schneller F, Peschel C, Duyster J. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet. 2002; 359:9305:487491.
    [Google Scholar]
  21. Deininger M. Resistance to imatinib: mechanisms and management. J Natl Compr Canc Netw. 2005; 3:6:757768.
    [Google Scholar]
  22. Al-Ali HK, Heinrich MC, Lange T, Krahl R, Mueller M, Müller C, Niederwieser D, Druker BJ, Deininger MW, Al-Ali HK, Heinrich MC, Lange T, Krahl R, Mueller M, Müller C, Niederwieser D, Druker BJ, Deininger MW. High incidence of BCR-ABL kinase domain mutations and absence of mutations of the PDGFR and KIT activation loops in CML patients with secondary resistance to imatinib. Hematol J. 2004; 5:1:5560.
    [Google Scholar]
  23. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001; 293:5531:876880.
    [Google Scholar]
  24. Ma W, Kantarjian H, Yeh CH, Zhang ZJ, Cortes J, Albitar M. BCR-ABL truncation due to premature translation termination as a mechanism of resistance to kinase inhibitors. Acta Haematol. 2009; 121:1:2731.
    [Google Scholar]
  25. Meggyesi N, Kalmár L, Fekete S, Masszi T, Tordai A, Andrikovics H. Characterization of ABL exon 7 deletion by molecular genetic and bioinformatic methods reveals no association with imatinib resistance in chronic myeloid leukemia. Med Oncol. 2012; 29:3:21362142.
    [Google Scholar]
  26. Sherbenou DW, Hantschel O, Turaga L, Kaupe I, Willis S, Bumm T, Press RD, Superti-Furga G, Druker BJ, Deininger MW. Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia. Leukemia. 2008; 22:6:11841190.
    [Google Scholar]
  27. Gaillard JB, Arnould C, Bravo S, Donadio D, Exbrayat C, Jourdan E, Reboul D, Chiesa J, Lavabre-Bertrand T. Exon 7 deletion in the bcr-abl gene is frequent in chronic myeloid leukemia patients and is not correlated with resistance against imatinib. Mol Cancer Ther. 2010; 9:11:30833089.
    [Google Scholar]
  28. Ernst T, Hoffmann J, Erben P, Hanfstein B, Leitner A, Hehlmann R, Hochhaus A, Müller MC. ABL single nucleotide polymorphisms may masquerade as BCR-ABL mutations associated with resistance to tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 2008; 93:9:13891393.
    [Google Scholar]
  29. Sallmyr A, Tomkinson AE, Rassool FV. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks. Blood. 2008; 112:4:14131423.
    [Google Scholar]
  30. Otero L, Ornellas MH, de Azevedo AM, Tavares Rde C, Pires V, Abdelhay E, Bouzas LF, Fernandez Tde S. Karyotype abnormalities and their clinical significance in a group of chronic myeloid leukemia patients treated with hematopoietic stem cell transplantation. Sao Paulo Med J. 2007; 125:4:246249.
    [Google Scholar]
  31. Cortes JE, Talpaz M, Giles F, O'Brien S, Rios MB, Shan J, Garcia-Manero G, Faderl S, Thomas DA, Wierda W, Ferrajoli A, Jeha S, Kantarjian HM. Prognostic significance of cytogenetic clonal evolution in patients with chronic myelogenous leukemia on imatinib mesylate therapy. Blood. 2003; 101:10:37943800.
    [Google Scholar]
  32. Johansson B, Fioretos T, Mitelman F. Cytogenetic and molecular genetic evolution of chronic myeloid leukemia. Acta Haematol. 2002; 107:2:7694.
    [Google Scholar]
  33. Marktel S, Marin D, Foot N, Szydlo R, Bua M, Karadimitris A, De Melo VA, Kotzampaltiris P, Dazzi F, Rahemtulla A, Olavarria E, Apperley JF, Goldman JM. Chronic myeloid leukemia in chronic phase responding to imatinib: the occurrence of additional cytogenetic abnormalities predicts disease progression. Haematologica. 2003; 88:3:260267.
    [Google Scholar]
  34. Mitelman F. The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma. 1993; 11:suppl 1:1115.
    [Google Scholar]
  35. Wendel HG, de Stanchina E, Cepero E, Ray S, Emig M, Fridman JS, Veach DR, Bornmann WG, Clarkson B, McCombie WR, Kogan SC, Hochhaus A, Lowe SW. Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A. 2006; 103:19:74447449.
    [Google Scholar]
  36. Schütte J, Opalka B, Becher R, Bardenheuer W, Szymanski S, Lux A, Seeber S. Analysis of the p53 gene in patients with isochromosome 17q and Ph1-positive or -negative myeloid leukemia. Leuk Res. 1993; 17:6:533539.
    [Google Scholar]
  37. Fioretos T, Strömbeck B, Sandberg T, Johansson B, Billström R, Borg A, Nilsson PG, Van Den Berghe H, Hagemeijer A, Mitelman F, Höglund M. Isochromosome 17q in blast crisis of chronic myeloid leukemia and in other hematologic malignancies is the result of clustered breakpoints in 17p11 and is not associated with coding TP53 mutations. Blood. 1999; 94:1:225232.
    [Google Scholar]
  38. Jennings BA, Mills KI. c-myc locus amplification and the acquisition of trisomy 8 in the evolution of chronic myeloid leukaemia. Leuk Res. 1998; 22:10:899903.
    [Google Scholar]
  39. Jelinek J, Gharibyan V, Estecio MR, Kondo K, He R, Chung W, Lu Y, Zhang N, Liang S, Kantarjian HM, Cortes JE, Issa JP. Aberrant DNA methylation is associated with disease progression, resistance to imatinib and shortened survival in chronic myelogenous leukemia. PLoS One. 2011; 6:7:e22110.
    [Google Scholar]
  40. Länger F, Dingemann J, Kreipe H, Lehmann U. Up-regulation of DNA methyltransferases DNMT1, 3A, and 3B in myelodysplastic syndrome. Leuk Res. 2005; 29:3:325329.
    [Google Scholar]
  41. Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood. 2003; 101:2:690698.
    [Google Scholar]
  42. Mohamed AN, Pemberton P, Zonder J, Schiffer CA. The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin Cancer Res. 2003; 9:4:13331337.
    [Google Scholar]
  43. O'Dwyer ME, Mauro MJ, Blasdel C, Farnsworth M, Kurilik G, Hsieh YC, Mori M, Druker BJ. Clonal evolution and lack of cytogenetic response are adverse prognostic factors for hematologic relapse of chronic phase CML patients treated with imatinib mesylate. Blood. 2004; 103:2:451455.
    [Google Scholar]
  44. Schoch C, Haferlach T, Kern W, Schnittger S, Berger U, Hehlmann R, Hiddemann W, Hochhaus A. Occurrence of additional chromosome aberrations in chronic myeloid leukemia patients treated with imatinib mesylate. Leukemia. 2003; 17:2:461463.
    [Google Scholar]
  45. Palandri F, Testoni N, Luatti S, Marzocchi G, Baldazzi C, Stacchini M, Castagnetti F, Breccia M, Specchia G, Pane F, Saglio G, Martinelli G, Baccarani M, Rosti G. Influence of additional cytogenetic abnormalities on the response and survival in late chronic phase chronic myeloid leukemia patients treated with imatinib: long-term results. Leuk Lymphoma. 2009; 50:1:114118.
    [Google Scholar]
  46. Al-Dewik N. Molecular monitoring of chronic myelocytic leukaemia (CML) in a patient population of the State of Qatar on Imatinib Mesylate (IM) treatment. Haematologica. 2010; 95:s2:531. abs. 1310.
    [Google Scholar]
  47. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, Cervantes F, Deininger M, Gratwohl A, Guilhot F, Hochhaus A, Horowitz M, Hughes T, Kantarjian H, Larson R, Radich J, Simonsson B, Silver RT, Goldman J, Hehlmann R, European LeukemiaNet . Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009; 27:35:60416051.
    [Google Scholar]
  48. De Sanctis L, Romagnolo D, Olivero M, Buzi F, Maghnie M, Scirè G, Crino A, Baroncelli GI, Salerno M, Di Maio S, Cappa M, Grosso S, Rigon F, Lala R, De Sanctis C, Dianzani I. Molecular analysis of the GNAS1 gene for the correct diagnosis of Albright hereditary osteodystrophy and pseudohypoparathyroidism. Pediatr Res. 2003; 53:5:749755.
    [Google Scholar]
  49. Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B. Perforin-dependent brain-infiltrating cytotoxic CD8+T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol. 2003; 170:4:22212228.
    [Google Scholar]
  50. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cavé H, Pane F, Aerts JL, De Micheli D, Thirion X, Pradel V, González M, Viehmann S, Malec M, Saglio G, van Dongen JJ. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia. 2003; 17:12:24742486.
    [Google Scholar]
  51. Branford S, Hughes T. Detection of BCR-ABL mutations and resistance to imatinib mesylate. Methods Mol Med. 2006; 125::93106.
    [Google Scholar]
  52. Jabbour E, Kantarjian H, Jones D, Talpaz M, Bekele N, O'Brien S, Zhou X, Luthra R, Garcia-Manero G, Giles F, Rios MB, Verstovsek S, Cortes J. Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia. 2006; 20:10:17671773.
    [Google Scholar]
  53. Soverini S, Martinelli G, Rosti G, Bassi S, Amabile M, Poerio A, Giannini B, Trabacchi E, Castagnetti F, Testoni N, Luatti S, de Vivo A, Cilloni D, Izzo B, Fava M, Abruzzese E, Alberti D, Pane F, Saglio G, Baccarani M. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol. 2005; 23:18:41004109.
    [Google Scholar]
  54. Chien JH, Tang JL, Chen RL, Li CC, Lee CP. Detection of BCR-ABL gene mutations in Philadelphia chromosome positive leukemia patients resistant to STI-571 cancer therapy. Leuk Res. 2008; 32:11:17241734.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2014.13
Loading
/content/journals/10.5339/connect.2014.13
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error