1887
Volume 2013, Issue 1
  • EISSN: 2223-506X

Abstract

The aim of this study was to synthesise some substituted styryl 3,4-dimethoxy phenyl ketones using solvent-free SiO–HSO catalyzed aldol condensation between 3,4-dimethoxy acetophenone and substituted benzaldehydes under microwave irradiation. Then to characterize them by their analytical, physical and spectroscopic data, and also to study their the spectral correlation and antimicrobial activities. Solvent free microwave assisted aldol condensation method was used for synthesising 3,4-dimethoxyphenyl chalcones. They were characterised by ultraviolet (UV), infrared (IR), nuclear magnetic resonance (NMR) and mass spectroscopic data. The UV, IR, NMR spectral data were correlated with substituent constants, F and R parameters, using Hammett equation, to study the effect of substituents. The Bauer-Kirby method was used for evaluation of antimicrobial activities of the synthesised chalcones. Yields of synthesised chalcones were more than 85%. The spectral data of these ketones had been correlated, using single and multi-linear regression analysis. These gave a satisfactory degree of correlations with some parameters and a fair degree of correlations with other parameters. Few chalcones gave excellent antimicrobial activities, whereas others gave poor antimicrobial activities. Easy handling, non-hazardous and environmentally benign aldol condensation method had been adopted for synthesising chalcones with better yields. Some of the Hammett spectral correlations were found to be satisfactory with the observed spectroscopic data. Halo, methoxy, methyl and nitro substituted compounds had shown excellent antimicrobial activities based on their zone of inhibitions.

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.7
2013-07-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.7.html?itemId=/content/journals/10.5339/connect.2013.7&mimeType=html&fmt=ahah

References

  1. Thirunarayanan G, Mayavel P, Thirumurthy K. Fly-ash:H2SO4 catalyzed solvent free efficient synthesis of some aryl chalcones under microwave irradiation. Spectrochim Acta. 2012; 91A:, 1822
    [Google Scholar]
  2. Ansari FL, Baseer M, Iftikhar F, Kulsoom S, Ullah A, Nazir S, Shaukat A, Haq I, Mirza B, Arkivoc. 2009; 10::318
    [Google Scholar]
  3. Arulkumaran R, Vijayakumar S, Sundararajan R, Sakthinathan SP, Kamalakkannan D, Suresh R, Ranganathan K, Vanangamudi G, Thirunarayanan G. Int Lett Chem Phys Astro. 2012; 4::17
    [Google Scholar]
  4. Kalirajan R, Sivakumar SU, Jubie S, Gowramma B, Suresh B, Int J Chem Tech Res. 2009; 1:1:27
    [Google Scholar]
  5. Venkat Reddy G, Maitraie G, Narsaiah D, Rambahu B, Rao R, Synth Commun. 2001; 31:18:2881
    [Google Scholar]
  6. Kobayashi S, Kiyohara H, Yamaguchi M, J Am Chem Soc. 2011; 133::708
    [Google Scholar]
  7. Basaif SA, Sobahi TR, Khalil AK, Hassan MA, Bull Korean Chem Soc. 2005; 26:11:1677
    [Google Scholar]
  8. Walton B, Geiger Jean EC, J Am Chem Soc. 1945; 67:1:112
    [Google Scholar]
  9. Thirunarayanan G, Indian J Chem. 2007; 46B::1511
    [Google Scholar]
  10. Thirunarayanan G, Vanangamudi G, Arkivoc. 2006; 12::58
    [Google Scholar]
  11. Salehi P, Dabiri M, Zolfigol MA, Fard MAB, J Braz Chem Soc. 2004; 15:5:773
    [Google Scholar]
  12. Thirunarayanan G, Ananthakrishna Nadar P, J Indian Chem Soc. 2006; 83::1107
    [Google Scholar]
  13. Palleros DR, J Chem Edu. 2004; 81:9:1345
    [Google Scholar]
  14. Basaif SA, Sobahi TR, Khalil AK, Hassan MA, Bull Korean Chem Soc. 2005; 26:11:1677
    [Google Scholar]
  15. Xu Q, Yang Z, Yin D, Zhang F. Catal Commun. 2008; 9:1:1579
    [Google Scholar]
  16. Blackwell HE, Curr Opin Chem Biol. 2006; 10:3:203
    [Google Scholar]
  17. Zhang Z, Dong YW, Wang GW, Chem Lett. 2003; 32:10:966
    [Google Scholar]
  18. Thirunarayanan G, Iup J Chem. 2010; 3:4:35
    [Google Scholar]
  19. Thirunarayanan G. Proceedings of the 46th annual convention of chemists and international conference on recent research trends in chemical sciences. 2009;, No. ORG OP5, pp. C13
    [Google Scholar]
  20. Johnson BFG, Lewis J, Stephenson GR, Vichi EJS, Preparation and reactions of triphenylphosphine and triphenyl phosphite complexes of (benzylideneacetone)dicarbonyliron(0). J Chem Soc Dalton Trans. 1978;:369373. DOI:10.1039/DT9780000369
    [Google Scholar]
  21. Fernandes NS, Carvalho Filho MAS, Mendes RA, Meliosand CB, Ionashiro M, J Thermal Anal Cal. 2010; 76::193
    [Google Scholar]
  22. Xiuying Y, An-shun P, J Linyi Teachers Coll. 2004; 23::O6213
    [Google Scholar]
  23. Krishnakumar B, Velmurugan R, Swaminathan M, Catal Commun. 2011; 12:5:375
    [Google Scholar]
  24. Rajput JK, Kaur G, Tetrahedron Lett. 2012; 53::646
    [Google Scholar]
  25. Mokle SS, Sayeed MA, Kothawar , Chopde , Int J Chem Sci. 2004; 2:1:96
    [Google Scholar]
  26. Ranganathan K, Arulkumaran K, Kamalakkannan D, Vanangamudi G, Thirunarayanan G, Iup J Chem. 2011; 4:2:60
    [Google Scholar]
  27. Griffiths PR, Chalmers JM. Handbook of Vibrational Spectroscopy. vol. 4. Chinchester: John-Wiley & Sons 2002:.2576
    [Google Scholar]
  28. Thirunarayanan G, Surya S, Srinivasan S, Vanangamudi G, Sathyendiran V, Spectrochim Acta. 2010; 75A::152
    [Google Scholar]
  29. Vanangamudi G, Ranganathan K, Thirunaryanan G, World J Chem. 2012; 7::22
    [Google Scholar]
  30. Deiva CM, Pappano NB, Debattista N, Rev Microbiol. 1998; 29::307
    [Google Scholar]
  31. Sharma A, Gupta VP, Virdi A, Indian J Pure Appl Phys. 2005; 40::246
    [Google Scholar]
  32. Dass GK, Indian J Chem. 2001; 40::23
    [Google Scholar]
  33. Pellerin C, Pelletier I. Lab Plus International. vol. 19. UK: Reed Elsevier Publication 2005;:108112
    [Google Scholar]
  34. Horv'ath V, Varga Z, Kov'acs A, J Mol Struct (Theochem). 2005; 755:1–3:247
    [Google Scholar]
  35. Wang YH, Zou JW, Zhang B, Lu YX, Jin HX, Yu QS, J Mol Struct (Theochem). 2005; 755:1–2:31
    [Google Scholar]
  36. Chen JC, Qian L, Wu WJ, Chen LM, Zheng KC, J Mol Struct (Theochem). 2005; 755:1–3:167
    [Google Scholar]
  37. Dumont E, Chaquin P, J Mol Struct (Theochem). 2006; 758:2–3:161
    [Google Scholar]
  38. Senthilkumar K, Sethu Raman M, Kolandaivel P, J Mol Struct (Theochem). 2006; 758:2–3:107
    [Google Scholar]
  39. Izadar M, Gholami MRJ, J Mol Struct (Theochem). 2006; 755:1–2:11
    [Google Scholar]
  40. Kaur D, Sharma P, Bharatam PV, Dogra N, J Mol Struct (Theochem). 2006; 755:1–3:41
    [Google Scholar]
  41. Santelli M, Delphine M, Douniazad EA, Helena P, J Mol Struct (Theochem). 2006; 755:1–3:113
    [Google Scholar]
  42. Dhami KS, Stothers JB, Canadian J Chem. 1963; 43::479
    [Google Scholar]
  43. Lauterber PC, J Am Chem Soc. 1961; 83::1846
    [Google Scholar]
  44. Savin VI, Gainullina RG, Zuereu VV, Kitaev JP, Zh Org Khim. 1975; 11::169
    [Google Scholar]
  45. Solcaniova E, Toma S, Org Magn Reson. 1980; 14::181
    [Google Scholar]
  46. Kamalakkannan D, Vanangamudi G, Arulkumaran R, Thirumurthy K, Mayavel P, Thirunarayanan G, Elixir Org Chem. 2012; 46::8157
    [Google Scholar]
  47. Thirunarayanan G, Vanangamudi G, Gopalakrishnan M, Spectrochim Acta. 2007; 67:A:1106
    [Google Scholar]
  48. Thirunarayanan G, Vanangamudi G, Subramanian M, Umadevi U, Sakthinathan SP, Sundararajan R, Elixir Org Chem. 2011; 39::4643
    [Google Scholar]
  49. Sundararajan R, Arulkumaran K, Vijayakumar S, Kamalakkannan D, Suresh R, Ranganathan K, Sakthinathan SP, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G, Int J Pharm Chem Sci. 2012; 1::1657
    [Google Scholar]
  50. Liu X, Go ML, Bioorg Med Chem. 2006; 14::153
    [Google Scholar]
  51. Deng J, Sanchez T, Lalith QAM, Bioorg Med Chem. 2007; 15:14:985
    [Google Scholar]
  52. Lahtchev KL, Batovska DI, St Parushev P, Ubiyvock VM, Sibirny AA, Eur J Med Chem. 2008; 43:1:1
    [Google Scholar]
  53. Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan , SR , Bioorg Med Chem. 2006; 14::3491
    [Google Scholar]
  54. Dominguez JN, Leon C, Rodrigues J, IL Farmaco. 2005; 60:4:307
    [Google Scholar]
  55. Lin YM, Zhon Y, Flavin MT, Zhon M, Ne W, Chen FC, Bioorg Med Chem. 2002; 10:8:2795
    [Google Scholar]
  56. Weber MW, Hunsaker LA, Abcouwer SF, Decker LM, Vander Jagat DL, Bioorg Med Chem. 2005; 13::3811
    [Google Scholar]
  57. Attar S, O'Brien Z, Alhaddad H, Golden ML, Calderon-Urrea A. Ferrocenyl chalcones versus organic chalcones: A comparative study of their nematocidal activity. Bioorg Med Chem. 2011; 19::20552073
    [Google Scholar]
  58. Swain CG, Lupton EC Jr, J Am Chem Soc. 1968; 90::4328
    [Google Scholar]
  59. Hays WP, Timmons CJ, Spectrochim Acta. 1968; 24A::323
    [Google Scholar]
  60. Bauer AW, Kirby WMM, Sherris JC, Truck M, Am J Clin Pathol. 1996; 45::493
    [Google Scholar]
  61. Ranganathan K, Arulkumaran R, Kamalakkannan D, Sundararajan R, Sakthinathan SP, Vijayakumar S, Suresh R, Vanangamudi G, Thirumurthy K, Mayavel P, Thirunarayanan G, Int J Pharm Med Bio Sci. 2012; 1:1:62
    [Google Scholar]
  62. Thirunarayanan G, Thirumurthy K, Vanangamudi G, Subramanian M, Arulkumaran R, Kamalakkannan D, Sundararajan R, Sakthinathan SP, Vijayakumar S, Ranganathan K, Suresh R, Elixir Org Chem. 2012; 45::7898
    [Google Scholar]
  63. Thirunarayanan GJ, J Indian Chem. 2008; 85:4:447
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.7
Loading
/content/journals/10.5339/connect.2013.7
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error