1887
Volume 2013, Issue 1
  • E-ISSN: 2223-506X

Abstract

This paper describes the optical limiting performance of 2D ZnO nanoflakes and plates synthesized through a simple wet chemical method. Scanning electron microscopic imaging of these nanostructures revealed the shape evolution from the nanoflakes to nanoplates as the growth duration increased from 11 h to 18 h. The nonlinear absorption is studied using open aperture Z scan technique. The process behind the nonlinear absorption is predicted as two photon absorption and one photon assisted energy transfer to the nearby trapping sites. We observe the appreciable optical limiting threshold of 46.86 MW/cm2 for high pump power of 436 MW/cm2 for nanoplates compared with nanoflakes (169.49 MW/cm2).

Loading

Article metrics loading...

/content/journals/10.5339/connect.2013.33
2013-10-01
2020-02-20
Loading full text...

Full text loading...

/deliver/fulltext/connect/2013/1/connect.2013.33.html?itemId=/content/journals/10.5339/connect.2013.33&mimeType=html&fmt=ahah

References

  1. Sreeja R, Reshmi R, Manu G, Jayaraj MK. Determination of third-order optical absorptive nonlinearity of ZnO nanoparticles by Z-scan technique. In: Quan CAsundi A, eds. Ninth International Symposium on Laser Metrology. SPIE – International Society for Optical Engineering. 2008:.715521
    [Google Scholar]
  2. Haripadmam PC, Kavitha MK, John H, Krishnan B, Gopinath P. Optical limiting studies of ZnO nanotops and its polymer nanocomposite films. Appl Phys Lett. 2012; 101:7:071103
    [Google Scholar]
  3. Irimpan L, Krishnan B, Nampoori VPN, Radhakrishnan P. Luminescence tuning and enhanced nonlinear optical properties of nanocomposites of ZnO-TiO2 . J Colloid Interf Sci. 2008; 324:1-2:99104
    [Google Scholar]
  4. Wang W, Wang L, Liu L, He C, Tan J, Liang Y. Morphology-controlled synthesis and growth mechanism of ZnO nanostructures via the NaCl nonaqueous ionic liquid route. CrystEngComm. 2012; 14:15:4997
    [Google Scholar]
  5. Liu J, Xu L, Wei B, Lv W, Gao H, Zhang X. One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate. CrystEngComm. 2011; 13:5:1283
    [Google Scholar]
  6. Lupan O, Chow L, Chai G, Roldan B, Naitabdi A, Schulte A, Heinrich H. Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing. Mater Sci Eng B. 2007; 145:1-3:5766
    [Google Scholar]
  7. Gao SY, Li HD, Yuan JJ, Li YA, Yang XX, Liu JW. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction. Appl Surf Sci. 2010; 256:9:27812785
    [Google Scholar]
  8. Anas S, Mahesh KV, Ambily KJ, Chandran MR, Uma K, Warrier KGK, Ananthakumar S. New insights on physico-chemical transformations of ZnO: From clustered multipods to single crystalline nanoplates. Mater Chem Phys. 2012; 134:1:435442
    [Google Scholar]
  9. Petrov GI, Shcheslavskiy V, Yakovlev VV, Ozerov I, Chelnokov E, Marine W. Efficient third-harmonic generation in a thin nanocrystalline film of ZnO. Appl Phys Lett. 2003; 83:19:3993
    [Google Scholar]
  10. Wang Y, Li M. Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods. Mater Lett. 2006; 60:2:266269
    [Google Scholar]
  11. Lucas M, Wang ZL, Riedo E. Growth direction and morphology of ZnO nanobelts revealed by combining in situ atomic force microscopy and polarized Raman spectroscopy. Phys Rev B. 2010; 81:4
    [Google Scholar]
  12. Jiang L, Li G, Ji Q, Peng H. Morphological control of flower-like ZnO nanostructures. Mater Lett. 2007; 61:10:19641967
    [Google Scholar]
  13. Wei A, Sun XW, Xu CX, Dong ZL, Yang Y, Tan ST, Huang W. Growth mechanism of tubular ZnO formed in aqueous solution. Nanotechnology. 2006; 17:6:17401744
    [Google Scholar]
  14. Deng D, Martin ST, Ramanathan S. Synthesis and characterization of one-dimensional flat ZnO nanotower arrays as high-efficiency adsorbents for the photocatalytic remediation of water pollutants. Nanoscale. 2010; 2:12:2685
    [Google Scholar]
  15. Yin S, Goto T, Gobo F, Huang YF, Zhang PL, Sato T. Synthesis of Plate-like Zinc Oxide Particles by the Transcription of Precursor_s Shape. IOP Conf Ser Mater Sci Eng. 2011; 18:4:042004
    [Google Scholar]
  16. Xu Y, Yu K, Wu J, Xu J, Shang D, Zhu Z. Synthesis, optical and field emission properties of ZnO microhair-clasps. Appl Surf Sci. 2009; 255:13-14:64876492
    [Google Scholar]
  17. Porel S, Singh S, Harsha SS, Rao DN, Radhakrishnan TP. Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting. Chem Mater. 2005; 17:1:912
    [Google Scholar]
  18. Mahalingam T, Lee KM, Park KH, Lee S, Ahn Y, Park J-Y, Koh KH. Low temperature wet chemical synthesis of good optical quality vertically aligned crystalline ZnO nanorods. Nanotechnology. 2007; 18:3:035606
    [Google Scholar]
  19. Tian J-H, Hu J, Li S-S, Zhang F, Liu J, Shi J, Li X, Tian Z-Q, Chen Y. Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires. Nanotechnology. 2011; 22:24:245601
    [Google Scholar]
  20. Sheik-Bahae M, Said AA, Wei T-H, Hagan DJ, Van Stryland EW. Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quant Electron. 1990; 26:4:760769
    [Google Scholar]
  21. Cao B, Cai W. From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J Phys Chem C. 2008; 112:3:680685
    [Google Scholar]
  22. Jang ES, Won J-H, Hwang S-J, Choy J-H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity. Adv Mater. 2006; 18:24:33093312
    [Google Scholar]
  23. Barret CS, Massalski TB. Structure of Metals. 3rd revised ed. Oxford: Pergamon Press 1980;
    [Google Scholar]
  24. Tauc J, Menth A. States in the gap. J Non-Cryst Solids. 1972; 8-10::569585
    [Google Scholar]
  25. Tintu R, Nampoori VPN, Radhakrishnan P, Thomas S. Preparation and optical characterization of novel Ge-Se-Sb/PVA composite films for optical limiting application. J Phys D: Appl Phys. 2011; 44:2:025101
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/connect.2013.33
Loading
/content/journals/10.5339/connect.2013.33
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): nanoflakes , nanoplates , optical limiting and ZnO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error