1887
Volume 2022, Issue 2
  • EISSN: 2708-0463

Abstract

صُمّم نظام المرشحات المتداخلة بوصفه مرشحاً حيوياً قائماً على قدرات التربة الفيزيوكيميائية والأحيائية لمعالجة ملوثات المياه العادمة، ويتميز من باقي الأنظمة الطبيعية المماثلة بحاجات أقل إلى الطاقة والمساحة والصيانة، وإمكانية إعادة استعمال المياه المعالجة في الموقع نفسه. يتكون النظام من طبقتين متباينتين من حيث المواد المستخدمة والمسامية: طبقات خليط التربة والطبقات النفاذة، المرصوصة في شكل يشبه اللبنات؛ حيث مكّن هذا التصميم البارع من تقليص احتمالية انسداد النظام، وزيادة قدرته على تلقّي أحجام كبرى من المياه العادمة، مع ازدواجية الظروف الهوائية واللاهوائية داخله؛ الشيء الذي أكسبه قدرات معالجة متقدمة لمختلف الملوثات بمختلف أنواع المياه العادمة اللامركزية. يهدف هذا البحث إلى التعريف بنظام المرشحات المتداخلة بوصفه تقنية بيئية صاعدة، حيث يلخص مبدأ عمله، وأدوار المواد المكونة له، وآليات معالجة مختلف الملوثات. ويستعرض نتائج بعض الاستخدامات الموفقة لهذا النظام عبر عدد من دول العالم، ونتائج دراسة التكلفة المنجزة التي أكدت انخفاض تكلفة بنائه، والتي لا تتعدى 80 دولاراً أمريكياً لمعالجة متر مكعب من المياه العادمة في اليوم لمدة 20 سنة متواصلة من الاستخدام. وأخيراً، يُظهر البحث، بناء على مقارنات بأنظمة مماثلة، مكامن القوة التي تجعل من هذا النظام بديلاً مستقبلياً ومستداماً للدول النامية كدول أفريقيا.

Multi-soil layering (MSL) is a wastewater treatment technology based on the advanced physico-chemical and biological abilities of soil to remediate decentralized wastewater pollutants. The MSL system is characterized by low space occupation, reduced maintenance, energetic needs, and offers the opportunity to the on-site reuse compared to similar natural wastewater treatment technologies. MSL is constructed through the succession of heterogeneous layers: soil mixture layers (SMLs) and permeable layers (PLs) in a brick-like configuration. This ingenious design enabled the system to sustain high hydraulic loads and minimized clogging risks with the coexistence of aero/anaerobic condition and to acquire advanced purifying capabilities for several decentralized wastewater types. This work aims to introduce MSL as an emerging Eco-technology, summarizes the operating principle, function of used materials, and removal mechanisms through the system. Moreover, this paper displays some successful applications across different countries and confirms the low-cost character of the system through an economical analysis that sets the construction cost in less than 80 US$ to treat 1m3/day during 20 consecutive years of operation. Finally, this study enumerates the MSL strengths in comparison to conventional technologies as a future sustainable alternative for developing nations such as the African countries.

Loading

Article metrics loading...

/content/journals/10.5339/ajsr.2022.10
2022-10-31
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ajsr/2022/2/ajsr.2022.10.html?itemId=/content/journals/10.5339/ajsr.2022.10&mimeType=html&fmt=ahah

References

  1. Kusangaya S, Warburton ML, Van Garderen EA, Jewitt GP. Impacts of climate change on water resources in southern Africa: A review. Physics and Chemistry of the Earth, Parts A/B/C. 201467–69:47–54. https://doi.org/10.1016/j.pce.2013.09.014
    [Google Scholar]
  2. König M, Escher BI, Neale PA, Krauss M, Hilscherová K, Novák J, et al. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environmental Pollution. 2017220:1220–1230. https://doi.org/10.1016/j.envpol.2016.11.011
    [Google Scholar]
  3. Hassen W, Alibi S, Mansour HB. Assessment of the physico-chemical and microbial pollution of wastewater and seawater collected from five Mediterranean countries. Arabian Journal of Scientific Research. 20212021(1):1–10. https://doi.org/10.5339/ajsr.2021.6
    [Google Scholar]
  4. Le C, Zha Y, Li Y, Sun D, Lu H, Yin B. Eutrophication of lake waters in China: Cost, causes, and control. Environmental Management. 201045(4):662–668. https://doi.org/10.1007/s00267-010-9440-3
    [Google Scholar]
  5. Fuhrimann S, Winkler MS, Stalder M, Niwagaba CB, Babu M, Kabatereine NB, et al. Disease burden due to gastrointestinal pathogens in a wastewater system in Kampala, Uganda. Microbial Risk Analysis. 20164:16–28. https://doi.org/10.1016/j.mran.2016.11.003
    [Google Scholar]
  6. Gharaibeh MA, Ghezzehei TA, Albalasmeh AA, Alghzawi MZ. Alteration of physical and chemical characteristics of clayey soils by irrigation with treated waste water. Geoderma. 2016276:33–40. https://doi.org/10.1016/j.geoderma.2016.04.011
    [Google Scholar]
  7. Hospido A, Moreira MT, Fernández-Couto M, Feijoo G. Environmental performance of a municipal wastewater treatment plant. International Journal of Life Cycle Assessment. 20049(4):261–271. https://doi.org/10.1007/BF02978602
    [Google Scholar]
  8. Arola K, Van der Bruggen B, Mänttäri M, Kallioinen M. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review. Critical Reviews in Environmental Science and Technology. 201949(22):2049–2116. https://doi.org/10.1080/10643389.2019.1594519
    [Google Scholar]
  9. Zhang QH, Yang WN, Ngo HH, Guo WS, Jin PK, Dzakpasu M, et al. Current status of urban wastewater treatment plants in China. Environment International. 201692:11–22
    [Google Scholar]
  10. Withers PJ, Jordan P, May L, Jarvie HP, Deal NE. Do septic tank systems pose a hidden threat to water quality? Frontiers in Ecology and the Environment. 201412(2):123–130
    [Google Scholar]
  11. Zhang NS, Liu YS, Van den Brink PJ, Price OR, Ying GG. Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities. Ecotoxicology and Environmental Safety. 2015122:417–425. https://doi.org/10.1016/j.envint.2016.03.024
    [Google Scholar]
  12. Singh NK, Kazmi AA, Starkl M. A review on full-scale decentralized wastewater treatment systems: Techno-economical approach. Water Science and Technology. 201571(4):468–478. https://doi.org/10.2166/wst.2014.413
    [Google Scholar]
  13. Abou-Elela SI, Hellal MS, Aly OH, Abo-Elenin SA. Decentralized wastewater treatment using passively aerated biological filter. Environmental Technology. 201940(2):250–260. https://doi.org/10.1080/09593330.2017.1385648
    [Google Scholar]
  14. Zhang Z, Lei Z, Zhang Z, Sugiura N, Xu X, Yin D. Organics removal of combined wastewater through shallow soil infiltration treatment: A field and laboratory study. Journal of Hazardous Materials. 2007149(3):657–665. https://doi.org/10.1016/j.jhazmat.2007.04.026
    [Google Scholar]
  15. Wakatsuki T, Esumi H, Omura S. High performance and N & P-removable on-site domestic waste water treatment system by multi-soil-layering method. Water Science and Technology. 199327(1):31–40. https://doi.org/10.2166/wst.1993.0010
    [Google Scholar]
  16. Masunaga T, Sato K, Mori J, Shirahama M, Kudo H, Wakatsuki T. Characteristics of wastewater treatment using a multi-soil-layering system in relation to wastewater contamination levels and hydraulic loading rates. Soil Science and Plant Nutrition. 200753(2):215–223. https://doi.org/10.1111/j.1747-0765.2007.00128.x
    [Google Scholar]
  17. Chen X, Luo AC, Sato K, Wakatsuki T, Masunaga T. An introduction of a multi‐soil‐layering system: A novel green technology for wastewater treatment in rural areas. Water and Environment Journal. 200923(4):255–262. https://doi.org/10.1111/j.1747-6593.2008.00143.x
    [Google Scholar]
  18. Luanmanee S, Attanandana T, Masunaga T, Wakatsuki T. The efficiency of a multi-soil-layering system on domestic wastewater treatment during the ninth and tenth years of operation. Ecological Engineering. 200118(2):185–199. https://doi.org/10.1016/S0925-8574(01)00077-5
    [Google Scholar]
  19. Attanandana T, Saitthiti B, Thongpae S, Kritapirom S, Luanmanee S, Wakatsuki T. Multi-media-layering system for food service wastewater treatment. Ecological Engineering. 200015(1–2):133–138. https://doi.org/10.1016/S0925-8574(99)00041-5
    [Google Scholar]
  20. Ait-hmane A, Ouazzani N, Latrach L, Hejjaj A, Assabbane A, Belkouadssi M, et al. Feasibility of olive mill wastewater treatment by multi-soil-layering ecotechnology. Journal of Materials and Environmental Science. 20189(4):1223–1233. https://doi.org/10.26872/jmes.2017.9.4.134
    [Google Scholar]
  21. Chen X, Sato K, Wakatsuki T, Masunaga T. Effect of aeration and material composition in soil mixture block on the removal of colored substances and chemical oxygen demand in livestock wastewater using multi-soil-layering systems. Soil Science and Plant Nutrition. 200753(4):509–516. https://doi.org/10.1111/j.1747-0765.2007.00156.x
    [Google Scholar]
  22. Latrach L, Masunaga T, Ouazzani N, Hejjaj A, Mahi M, Mandi L. Removal of bacterial indicators and pathogens from domestic wastewater by the multi-soil-layering (MSL) system. Soil Science and Plant Nutrition. 201561(2):337–346. https://doi.org/10.1080/00380768.2014.974480
    [Google Scholar]
  23. Pattnaik R, Yost RS, Porter G, Masunaga T, Attanandana T. Removing the N and P in dairy effluent using multi-soil-layer (MSL) systems. Applied Engineering in Agriculture. 200824(4):431–437. https://doi.org/10.13031/2013.25143
    [Google Scholar]
  24. Latrach L, Ouazzani N, Masunaga T, Hejjaj A, Bouhoum K, Mahi M, et al. Domestic wastewater disinfection by combined treatment using multi-soil-layering system and sand filters (MSL–SF): A laboratory pilot study. Ecological Engineering. 201691:294–301. https://doi.org/10.1016/j.ecoleng.2016.02.036
    [Google Scholar]
  25. Masih I, Maskey S, Mussá FEF, Trambauer P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrology and Earth System Sciences. 201418(9):3635–3649. https://doi.org/10.5194/hess-18-3635-2014
    [Google Scholar]
  26. Olagunju A, Thondhlana G, Chilima JS, Sène-Harper A, Compaoré WRN, Ohiozebau E. Water governance research in Africa: Progress, challenges and an agenda for research and action. Water International. 201944(4):382–407. https://doi.org/10.1080/02508060.2019.1594576
    [Google Scholar]
  27. Sato K, Masunaga T, Wakatsuki T. Characterization of treatment processes and mechanisms of COD, phosphorus and nitrogen removal in a multi-soil-layering system. Soil Science and Plant Nutrition. 200551(2):213–221. https://doi.org/10.1111/j.1747-0765.2005.tb00025.x
    [Google Scholar]
  28. Tzanakakis VE, Paranychianaki NV, Angelakis AN. Soil as a wastewater treatment system: Historical development. Water Science and Technology: Water Supply. 20077(1):67–75. https://doi.org/10.2166/ws.2007.008
    [Google Scholar]
  29. Capodaglio AG, Callegari A, Cecconet D, Molognoni D. Sustainability of decentralized wastewater treatment technologies. Water Practice and Technology. 201712(2):463–477. https://doi.org/10.2166/wpt.2017.055
    [Google Scholar]
  30. Perkins RJ. Onsite wastewater disposal. Michigan: Lewis Publishers; 1989.
    [Google Scholar]
  31. Song P, Huang G, An C, Zhang P, Chen X, Ren S. Performance analysis and life cycle greenhouse gas emission assessment of an integrated gravitational-flow wastewater treatment system for rural areas. Environmental Science and Pollution Research. 201926(25):25883–25897. https://doi.org/10.1007/s11356-019-05746-2
    [Google Scholar]
  32. Yidong G, Xin C, Shuai Z, Ancheng L. Performance of multi-soil-layering system (MSL) treating leachate from rural unsanitary landfills. Science of the Total Environment. 2012420:183–190. https://doi.org/10.1016/j.scitotenv.2011.12.057
    [Google Scholar]
  33. Sato K, Iwashima N, Wakatsuki T, Masunaga T. Quantitative evaluation of treatment processes and mechanisms of organic matter, phosphorus, and nitrogen removal in a multi-soil-layering system. Soil Science and Plant Nutrition. 201157(3):475–486. https://doi.org/10.1080/00380768.2011.590944
    [Google Scholar]
  34. Masunaga T, Sato K, Zennami T, Fujii S, Wakatsuki T. Direct treatment of polluted river water by the multi-soil-layering method. Journal of Water and Environment Technology. 20031(1):97–104. https://doi.org/10.2965/jwet.2003.97
    [Google Scholar]
  35. Guan Y, Zhang Y, Zhong CN, Huang XF, Fu J, Zhao D. Effect of operating factors on the contaminants removal of a soil filter: Multi-soil-layering system. Environmental Earth Sciences. 201574(3):2679–2686. https://doi.org/10.1007/s12665-015-4288-8
    [Google Scholar]
  36. Sato K, Masunaga T, Wakatsuki T. Water movement characteristics in a multi‐soil‐layering system. Soil Science and Plant Nutrition. 200551(1):75–82. https://doi.org/10.1111/j.1747-0765.2005.tb00009.x
    [Google Scholar]
  37. Sato K, Iwashima N, Wakatsuki T, Masunaga T. Clarification of water movement properties in a multi-soil-layering system. Soil Science and Plant Nutrition. 201157(4):607–618. https://doi.org/10.1080/00380768.2011.594966
    [Google Scholar]
  38. Luanmanee S, Boonsook P, Attanandana T, Wakatsuki T. Effect of organic components and aeration regimes on the efficiency of a multi-soil-layering system for domestic wastewater treatment. Soil Science and Plant Nutrition. 200248(2):125–134. https://doi.org/10.1080/00380768.2002.10409182
    [Google Scholar]
  39. Ho CC, Wang PH. Efficiency of a multi-soil-layering system on wastewater treatment using environment-friendly filter materials. International Journal of Environmental Research and Public Health. 201512(3):3362–3380. https://doi.org/10.3390/ijerph120303362
    [Google Scholar]
  40. Katsoyiannis A, Samara C. The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research – International. 200714(5):284–292. https://doi.org/10.1065/espr2006.05.302
    [Google Scholar]
  41. López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, et al. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. Science of the Total Environment. 2019690:1068–1088. https://doi.org/10.1016/j.scitotenv.2019.07.052
    [Google Scholar]
  42. He W, Bai Z, Li Y, Kong X, Liu W, Yang C, et al. Advances in environmental behaviors and effects of dissolved organic matter in aquatic ecosystems. Science China Earth Sciences. 201659(4):746–759. https://doi.org/10.1007/s11430-015-5248-6
    [Google Scholar]
  43. Kube M, Jefferson B, Fan L, Roddick F. The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal. Algal Research. 201831:478–488. https://doi.org/10.1016/j.algal.2018.01.009
    [Google Scholar]
  44. Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, et al. Nitrogen management strategies to reduce nitrate leaching in tile‐drained Midwestern soils. Agronomy Journal. 200294(1):153–171. https://doi.org/10.2134/agronj2002.1530
    [Google Scholar]
  45. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Science of the Total Environment. 2020728:138764. https://doi.org/10.1016/j.scitotenv.2020.138764
    [Google Scholar]
  46. Farkas K, Hillary LS, Malham SK, McDonald JE, Jones DL. Wastewater and public health: The potential of wastewater surveillance for monitoring COVID-19. Current Opinion in Environmental Science & Health. 202017:14–20. https://doi.org/10.1016/j.coesh.2020.06.001
    [Google Scholar]
  47. Norman G, Pedley S, Takkouche B. Effects of sewerage on diarrhoea and enteric infections: A systematic review and meta-analysis. Lancet Infectious Diseases. 201010(8):536–544. https://doi.org/10.1016/S1473-3099(10)70123-7
    [Google Scholar]
  48. Auriol M, Filali-Meknassi Y, Adams CD, Tyagi RD, Noguerol TN, Piña B. Removal of estrogenic activity of natural and synthetic hormones from a municipal wastewater: Efficiency of horseradish peroxidase and laccase from Trametes versicolor. Chemosphere. 200870(3):445–452. https://doi.org/10.1016/j.chemosphere.2007.06.064
    [Google Scholar]
  49. Song P, Huang G, An C, Xin X, Zhang P, Chen X, et al. Exploring the decentralized treatment of sulfamethoxazole-contained poultry wastewater through vertical-flow multi-soil-layering systems in rural communities. Water Research. 2021188:116480. https://doi.org/10.1016/j.watres.2020.116480
    [Google Scholar]
  50. Boonsook P, Luanmanee S, Attanandana T, Kamidouzono A, Masunaga T, Wakatsuki T. A comparative study of permeable layer materials and aeration regime on efficiency of multi-soil-layering system for domestic wastewater treatment in Thailand. Soil Science and Plant Nutrition. 200349(6):873–82. https://doi.org/10.1080/00380768.2003.10410350
    [Google Scholar]
  51. Hong Y, Huang G, An C, Song P, Xin X, Chen X, et al. Enhanced nitrogen removal in the treatment of rural domestic sewage using vertical-flow multi-soil-layering systems: Experimental and modeling insights. Journal of Environmental Management. 2019240:273–284. https://doi.org/10.1016/j.jenvman.2019.03.097
    [Google Scholar]
  52. Zhang Y, Cheng Y, Yang C, Luo W, Zeng G, Lu L. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater. Bioresource Technology. 2015193:424–432. https://doi.org/10.1016/j.biortech.2015.06.140
    [Google Scholar]
  53. Kadam AM, Oza GH, Nemade PD, Shankar HS. Pathogen removal from municipal wastewater in constructed soil filter. Ecological Engineering. 200833(1):37–44. https://doi.org/10.1016/j.ecoleng.2007.12.001
    [Google Scholar]
  54. Latrach L, Ouazzani N, Hejjaj A, Mahi M, Masunaga T, Mandi L. Two-stage vertical flow multi-soil-layering (MSL) technology for efficient removal of coliforms and human pathogens from domestic wastewater in rural areas under arid climate. International Journal of Hygiene and Environmental Health. 2018221(1):64–80. https://doi.org/10.1016/j.ijheh.2017.10.004
    [Google Scholar]
  55. Luo W, Yang C, He H, Zeng G, Yan S, Cheng Y. Novel two-stage vertical flow biofilter system for efficient treatment of decentralized domestic wastewater. Ecological Engineering. 201464:415–423. https://doi.org/10.1016/j.ecoleng.2014.01.011
    [Google Scholar]
  56. Sofyan S, Sy S, Ardinal A. Combination of anaerobic filter system and multi soil layering (MSL) as an alternative for liquid waste treatment in small and medium food industry (in Malaysian). Indonesian Journal of Engineering Research. 20093(2):72227.
    [Google Scholar]
  57. Campana PE, Mainardis M, Moretti A, Cottes M. 100% renewable wastewater treatment plants: Techno-economic assessment using a modelling and optimization approach. Energy Conversion and Management. 2021239:114214. https://doi.org/10.1016/j.enconman.2021.114214
    [Google Scholar]
  58. Zhang Y, Rottiers T, Meesschaert B, Pinoy L, Van der Bruggen B. Wastewater treatment by renewable energy driven membrane processes. In: Basile A, Cassano A, Figoli A, editors. Current trends and future developments on (bio-) membranes [Internet]. Elsevier; 2019 [cited 2021 Aug 21]. pp. 1–19. https://doi.org/10.1016/B978-0-12-813545-7.00001-5
    [Google Scholar]
  59. Koottatep T, Pussayanavin T, Polprasert C. Nouveau design solar septic tank: Reinvented toilet technology for sanitation 4.0. Environmental Technology & Innovation. 202019:100933. https://doi.org/10.1016/j.eti.2020.100933
    [Google Scholar]
  60. Rousseau DP, Vanrolleghem PA, De Pauw N. Constructed wetlands in Flanders: A performance analysis. Ecological Engineering. 200423(3):151–163. https://doi.org/10.1016/j.ecoleng.2004.08.001
    [Google Scholar]
  61. Puigagut J, Villaseñor J, Salas JJ, Bécares E, García J. Subsurface-flow constructed wetlands in Spain for the sanitation of small communities: A comparative study. Ecological Engineering. 200730(4):312–319. https://doi.org/10.1016/j.ecoleng.2007.04.005
    [Google Scholar]
  62. Sato K, Wakatsuki T, Iwashima N, Masunaga T. Evaluation of long-term wastewater treatment performances in multi-soil-layering systems in small rural communities. Applied and Environmental Soil Science. 20192019:e1214368. https://doi.org/10.1155/2019/1214368
    [Google Scholar]
  63. Ingrao C, Failla S, Arcidiacono C. A comprehensive review of environmental and operational issues of constructed wetland systems. Current Opinion in Environmental Science & Health. 202013:35–45. https://doi.org/10.1016/j.coesh.2019.10.007
    [Google Scholar]
  64. Harrington R, McInnes R. Integrated constructed wetlands (ICW) for livestock wastewater management. Bioresource Technology. 2009100(22):5498–5505. https://doi.org/10.1016/j.biortech.2009.06.007
    [Google Scholar]
  65. Nogueira R, Brito AG, Machado AP, Janknecht P, Salas JJ, Vera L, et al. Economic and environmental assessment of small and decentralized wastewater treatment systems. Desalination and Water Treatment. 20094(1–3):16–21. https://doi.org/10.5004/dwt.2009.349
    [Google Scholar]
  66. Schäfer ML, Lundström JO, Pfeffer M, Lundkvist E, Landin J. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden. Medical and Veterinary Entomology. 200418(3):256–267. https://doi.org/10.1111/j.0269-283X.2004.00504.x
    [Google Scholar]
  67. Yang Z, Wang Q, Zhang J, Xie H, Feng S. Effect of plant harvesting on the performance of constructed wetlands during summer. Water. 20168(1):24. https://doi.org/10.3390/w8010024
    [Google Scholar]
  68. El Hamouri B, Nazih J, Lahjouj J. Subsurface-horizontal flow constructed wetland for sewage treatment under Moroccan climate conditions. Desalination. 2007215(1–3):153–158. https://doi.org/10.1016/j.desal.2006.11.018
    [Google Scholar]
  69. Houda N, Hanene C, Ines M, Myriam BS, Imen D, Abdennaceur H. Isolation and characterization of microbial communities from a constructed wetlands system: A case study in Tunisia. African Journal of Microbiology Research. 20148(6):529–538. https://doi.org/10.5897/AJMR2013.6493
    [Google Scholar]
  70. Schulz R, Hahn C, Bennett ER, Dabrowski JM, Thiere G, Peall SKC. Fate and effects of azinphos-methyl in a flow-through wetland in South Africa. Environmental Science & Technology. 200337(10):2139–2144. https://doi.org/10.1021/es026029f
    [Google Scholar]
  71. Kilingo FM, Bernard Z, Hongbin C. Study of domestic wastewater treatment using Moringa oleifera coagulant coupled with vertical flow constructed wetland in Kibera Slum, Kenya. Environmental Science and Pollution Research. 202229:36589–36607. https://doi.org/10.1007/s11356-022-18692-3
    [Google Scholar]
  72. Torrens A, de la Varga D, Ndiaye AK, Folch M, Coly A. Innovative multistage constructed wetland for municipal wastewater treatment and reuse for agriculture in Senegal. Water. 202012(11):3139. https://doi.org/10.3390/w12113139
    [Google Scholar]
  73. Abdel-Shafy HI, El-Khateeb MA, Regelsberger M, El-Sheikh R, Shehata M. Integrated system for the treatment of blackwater and greywater via UASB and constructed wetland in Egypt. Desalination and Water Treatment. 20098(1–3):272–278. https://doi.org/10.5004/dwt.2009.788
    [Google Scholar]
  74. Mustapha HI, van Bruggen JJA, Lens PNL. Vertical subsurface flow constructed wetlands for polishing secondary Kaduna refinery wastewater in Nigeria. Ecological Engineering. 201584:588–595. https://doi.org/10.1016/j.ecoleng.2015.09.060
    [Google Scholar]
  75. Porges R, Mackenthun KM. Waste stabilization ponds: Use, function, and biota. Biotechnology and Bioengineering. 19635(4):255–273. https://doi.org/10.1002/bit.260050403
    [Google Scholar]
  76. Edokpayi JN, Odiyo JO, Popoola OE, Msagati TAM. Evaluation of contaminants removal by waste stabilization ponds: A case study of Siloam WSPs in Vhembe District, South Africa. Heliyon. 2021 7(2):e06207. https://doi.org/10.1016/j.heliyon.2021.e06207
    [Google Scholar]
  77. Edokpayi JN, Odiyo JO, Msagati TAM, Potgieter N. Temporal variations in physico-chemical and microbiological characteristics of Mvudi River, South Africa. International Journal of Environmental Research and Public Health. 201512(4):4128–4140. https://doi.org/10.3390/ijerph120404128
    [Google Scholar]
  78. Vuillot M, Boutin C. Waste stabilization ponds in Europe: A state of the art review. Water Science and Technology. 198719(12):1–6. https://doi.org/10.2166/wst.1987.0119
    [Google Scholar]
  79. Lloyd BJ, Leitner AR, Vorkas CA, Guganesharajah RK. Under-performance evaluation and rehabilitation strategy for waste stabilization ponds in Mexico. Water Science and Technology. 200348(2):35–43. https://doi.org/10.2166/wst.2003.0080
    [Google Scholar]
  80. Achag B, Mouhanni H, Bendou A. Hydro-biological characterization and efficiency of natural waste stabilization ponds in a desert climate (city of Assa, Southern Morocco). Journal of Water Supply: Research and Technology – Aqua. 202170(3):361–374. https://doi.org/10.2166/aqua.2021.125
    [Google Scholar]
  81. Hammadi B, Bebba AA, Gherraf N. Degradation of organic pollution aerated lagoons. In an arid climate: The case the treatment plant Ouargla (Algeria). Acta Ecologica Sinica. 201636(4):275–279. https://doi.org/10.1016/j.chnaes.2016.05.002
    [Google Scholar]
  82. Jarboui R, Sellami F, Azri C, Gharsallah N, Ammar E. Olive mill wastewater evaporation management using PCA method: Case study of natural degradation in stabilization ponds (Sfax, Tunisia). Journal of Hazardous Materials. 2010176(1–3):992–1005. https://doi.org/10.1016/j.jhazmat.2009.11.140
    [Google Scholar]
  83. K’oreje KO, Kandie FJ, Vergeynst L, Abira MA, Van Langenhove H, Okoth M, et al. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya. Science of the Total Environment. 2018637:336–348. https://doi.org/10.1016/j.scitotenv.2018.04.331
    [Google Scholar]
  84. Konaté Y, Maiga AH, Basset D, Casellas C, Picot B. Parasite removal by waste stabilisation pond in Burkina Faso, accumulation and inactivation in sludge. Ecological Engineering. 201350:101–106. https://doi.org/10.1016/j.ecoleng.2012.03.021
    [Google Scholar]
  85. Babu MA, van der Steen NP, Hooijmans CM, Gijzen HJ. Nitrogen mass balances for pilot-scale biofilm stabilization ponds under tropical conditions. Bioresource Technology. 2011102(4):3754–3760. https://doi.org/10.1016/j.biortech.2010.12.003
    [Google Scholar]
  86. An CJ, McBean E, Huang GH, Yao Y, Zhang P, Chen XJ, et al. Multi-soil-layering systems for wastewater treatment in small and remote communities. Journal of Environmental Informatics. 201627(2):131–144.
    [Google Scholar]
  87. Supriyadi, Widijanto H, Pranoto, Dewi AK. Improving quality of textile wastewater with organic materials as multi soil layering. IOP Conference Series: Materials Science and Engineering. 2016107:012016. https://doi.org/10.1088/1757-899X/107/1/012016
    [Google Scholar]
  88. Sy S, Sofyan, Ardinal, Kasman M. Reduction of pollutant parameters in textile dyeing wastewater by Gambier (Uncaria gambir Roxb) using the multi soil layering (MSL) bioreactor. IOP Conference Series: Materials Science and Engineering. 2019546(2):022032. https://doi.org/10.1088/1757-899X/546/2/022032
    [Google Scholar]
  89. Song P, Huang G, An C, Shen J, Zhang P, Chen X, et al. Treatment of rural domestic wastewater using multi-soil-layering systems: Performance evaluation, factorial analysis and numerical modeling. Science of the Total Environment. 2018644:536–546. https://doi.org/10.1016/j.scitotenv.2018.06.331
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/ajsr.2022.10
Loading
/content/journals/10.5339/ajsr.2022.10
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error