1887
Carbon Capture and Storage Workshop, Texas A&M University in Qatar
  • ISSN: 2220-2765
  • EISSN:

Abstract

Abstract

The literature concerning the application of CCS to industry is reviewed. Costs are presented for different sectors including “high purity” (processes which inherently produce a high concentration of CO ), cement, iron and steel, refinery and biomass. The application of CCS to industry is a field which has had much less attention than its application to the electricity production sector. Costs range from less than $ 10/t CO  up to above $ 100/t CO . In the words of a synthesis report from the United Nations Industrial Development Organisation (UNIDO) “This area has so far not been the focus of discussions and therefore much attention needs to be paid to the application of CCS to industrial sources if the full potential of CCS is to be unlocked”.

Loading

Article metrics loading...

/content/journals/10.5339/stsp.2012.ccs.17
2012-12-18
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/stsp/2012/2/stsp.2012.ccs.17.html?itemId=/content/journals/10.5339/stsp.2012.ccs.17&mimeType=html&fmt=ahah

References

  1. de Coninck H., Mikunda T., Gielen D., Nussbaumer P. and Shchreck B. Carbon Capture and Storage in Industrial Applications, Technology Synthesis Report. United Nations Industrial Development Organisation. 2010.
    [Google Scholar]
  2. International Energy Agency  Energy Transitions for Industry—Strategies for the Next Industrial Revolution. International Energy Agency Publications, Paris, France. 2009.
    [Google Scholar]
  3. International Energy Agency  Technology Roadmap—Carbon Capture and Storage. International Energy Agency Publications, Paris, France. 2009.
    [Google Scholar]
  4. Brown T., Gambhir A., Florin N. and Fennell P. Reducing CO 2  emissions from heavy industry: a review of technologies and considerations for policy makers. Grantham Institute Briefing Paper #7, 2012.
  5. International Energy Agency. Energy Technology Perspectives, 2010.
  6. Blunt M. Carbon Dioxide Storage. Grantham Institute Briefing Paper #4, 2010.
  7. Metz B.  et al. eds., IPCC Special Report on Carbon Dioxide Capture and Storage. IPCC, Geneva, Switzerland. 2005. p. 208
    [Google Scholar]
  8. McKinsey & Company  Carbon Capture and Storage: Assessing the Economics. 2008.
    [Google Scholar]
  9. Rubin E., Chen C. and Rao A.  Cost and Performance of fossil fuel power plants with CO 2  capture and storage. Energy Policy. 2007; 35::44444454.
    [Google Scholar]
  10. McCoy S. and Rubin E.S. Models of CO 2  Transport and Storage Costs and Their Importance in CCS Cost Estimates, Fourth Annual Conference On Carbon Capture And Sequestration DOE/NETL; 2005.
  11. Kaarstad O., Berger B. and Berg S.  More than coal—Towards a broader role for CCS. Energy Procedia. 2011; 4::0, 26622668.
    [Google Scholar]
  12. Farla J.C.M., Hendriks C.A. and Blok K.  Carbon dioxide recovery from industrial processes. Energy Conversion and Management. 1995; 36::827830.
    [Google Scholar]
  13. Bernstein L., Roy J., Delhotal K.C., Harnisch J., Matsuhashi R., Price L., Tanaka K., Worrell E., Yamba F. and Fengqi Z. Industry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Davidson O.R., Metz B., Bosch P.R., Dave R. and Meyer L.A. eds., 2007. Cambridge University Press, Cambridge, UK and New York, USA.
    [Google Scholar]
  14. The cement sustainability initiative (CSI report), The Cement Sustainability Initiative, CSI report, p. 8.
  15. Dean C.C., Blamey J., Florin N.H., Al-Jeboori M.J. and Fennell P.S.  The calcium looping cycle for CO 2  capture from power generation, cement manufacture and hydrogen production. Chemical Engineering Research and Design. 2011; 89::6, 836855.
    [Google Scholar]
  16. Rodrìguez N., Alonso M., Grasa G. and Abanades J.C.  Process for Capturing CO2  Arising from the Calcination of the CaCO3 Used in Cement Manufacture. Environmental Science & Technology. 2008; 42::18, 69806984.
    [Google Scholar]
  17. Naranjo M., Brownlow D.T. and Garza A.  CO 2  capture and sequestration in the cement industry. Energy Procedia. 2011; 4::0, 27162723.
    [Google Scholar]
  18. Bosoaga A., Masek O. and Oakey J.E.  CO 2  capture technologies for cement industry. Energy Procedia. 2009; 1::1, 133140.
    [Google Scholar]
  19. ECRA., ECRA CCS Project - Report about Phase II. European Cement Research Academy. Dusseldorf, Germany. 2009.
  20. Kuramochi T., Ramírez A., Turkenburg W. and Faaij A.  Comparative assessment of CO 2  capture technologies for carbon-intensive industrial processes. Progress in Energy and Combustion Science. 2012; 38::1, 87112.
    [Google Scholar]
  21. Egberts P., Keppel F., Wildenborg T., Hendriks C. and Waart A.-S.v.d. GESTCODSS; A Decision Support System for Underground Carbon Dioxide Sequestration. TNO and Ecofys, Utrecht, the Netherlands. 2003.
    [Google Scholar]
  22. ECRA., Technical Report: Carbon Capture Technology – Options and Potentials for the Cement Industry. European Cement Research Academy. Dusseldorf, Germany. 2007.
  23. Blamey J., Anthony E.J., Wang J. and Fennell P.S.  The calcium looping cycle for large-scale CO 2  capture. Progress in Energy and Combustion Science. 2010; 36::2, 260279.
    [Google Scholar]
  24. Shimizu T., Hirama T., Hosoda H., Kitano K., Inagaki M. and Tejima K.  A twin fluid-bed reactor for removal of CO 2  from combustion processes. Chemical Engineering Research & Design. 1999; 77::A1, 6268.
    [Google Scholar]
  25. Bhatty J.I. Role of Minor Elements in Cement Manufacture and Use. Research and Development Bulletin RD109T, Portland Cement Association, Skokie, Illinois, U.S.A., 1995.
  26. Dean C.C., Dugwell D. and Fennell P.S.  Investigation into potential synergy between power generation, cement manufacture and CO 2  abatement using the calcium looping cycle. Energy & Environmental Science. 2011; 4::20502053.
    [Google Scholar]
  27. Galloy A., Bayrak A., Kremer J., Orth M., Plötz S., Wieczorek M., Zorbach I., Ströhle J. and Epple B. CO 2  Capture in a 1 MWth Fluidized Bed Reactor in Batch Mode Operation, 5th International Conference on Clean Coal Technologies, Zaragoza, Spain, 8th–10th May 2011.
  28. Sanchez A. CaOling project - An Exercise in Carbonate Looping, CCS - Research and Development to Implementation, 2011. London, UK.
  29. Roeder A. Cemex - Climate Strategy and CCS. [ http://www3.imperial.ac.uk/pls/portallive/docs/1/50227751.PDF].
  30. International Energy Agency Greenhouse Gas R&D Programme, CO 2  Capture in the Cement Industry, Technical Study, Report Number 2008/3. 2008.
  31. Chukwuleke O.P., Cai J.-j., Chukwujekwu S. and Xiao S.  Shift from coke to coal using direct reduction method and challenges. Journal of Iron and Steel Research, International. 2009; 16::2, 15.
    [Google Scholar]
  32. EU Ultra Low CO 2  Steelmaking http://www.ulcos.org/en/index.php. Accessed 29/03/2012.
  33. Ziebik A., Lampert K. and Szega M.  Energy analysis of a blast-furnace system operating with the Corex process and CO 2  removal. Energy. 2008; 33::2, 199205.
    [Google Scholar]
  34. Siemens Global, Profitable and Environmentally Friendly Ironmaking [ http://www.industry.siemens.com/industrysolutions/metals-mining/en/metals/ironmaking/corex/Pages/home.aspx].
  35. Kuramochi T., Ramírez A., Turkenburg W. and Faaij A.  Techno-economic assessment and comparison of CO 2  capture technologies for industrial processes: Preliminary results for the iron and steel sector. Energy Procedia. 2011; 4::19811988.
    [Google Scholar]
  36. van Straelen J., Geuzebroek F., Goodchild N., Protopapas G. and Mahony L.  CO 2  capture for refineries, a practical approach. Energy Procedia. 2009; 1::1, 179185.
    [Google Scholar]
  37. Seabra P.N. UNIDO Global Technology Roadmap on CCS in Industry, Rio de Janeiro, 7–8 April 2011.
  38. Workman M., McGlashan N., Chalmers H. and Shah N.  An assessment of options for CO 2  removal from the atmosphere. Energy Procedia. 2011; 4::28772884.
    [Google Scholar]
  39. Bridgwater A.V.  Principles and practice of biomass fast pyrolysis processes for liquids. Journal of Analytical and Applied Pyrolysis. 1999; 51::322.
    [Google Scholar]
  40. Werther J., Saenger M., Hartge E.U., Ogada T. and Siagi Z.  Combustion of agricultural residues. Progress in Energy and Combustion Science. 2000; 26::1, 127.
    [Google Scholar]
  41. Rhodes J.S. and Keith D.W.  Biomass energy with geological sequestration of CO 2 : Two for the price of one?. Greenhouse Gas Control Technologies—6th International Conference. Gale J. and Kaya Y. eds., 2003; Pergamon, Oxford. 13711376.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/stsp.2012.ccs.17
Loading
/content/journals/10.5339/stsp.2012.ccs.17
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): CCScementindustryiron and steel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error