1887
Carbon Capture and Storage Workshop, Texas A&M University in Qatar
  • ISSN: 2220-2765
  • EISSN:

Abstract

Abstract

Large improvements in separations technology will require novel materials with enhanced properties and performance. The fundamental interlinks for success in merging synthesis and process incorporation are the structure, relevant physical/chemical properties, and performance of new materials. Specific materials with these interlinks are room-temperature ionic liquids (RTILs) and their polymers and composites. As a chemical platform, RTILs have an enormous range of structural variation that can provide the ability to “tune” their properties and morphology for a given application. Introduction of chemical specificity into the structure of RTIL-based materials is an additional key component. Membrane separation is the focus as a process for implementation. There have not been new materials successfully developed for this process in thirty years. For CO  capture, the target improvement in productivity is two orders of magnitude or more compared to commercial materials currently available.

Loading

Article metrics loading...

/content/journals/10.5339/stsp.2012.ccs.15
2012-12-19
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/stsp/2012/2/stsp.2012.ccs.15.html?itemId=/content/journals/10.5339/stsp.2012.ccs.15&mimeType=html&fmt=ahah

References

  1. Figueroa J.D.  Advances in CO 2  capture technology - the US Departments of Energy’s carbon sequestration program. Int. J. Greenhouse Gas Control. 2008; 2::9.
    [Google Scholar]
  2. Rochelle G.T.  Cost and performance baseline for fossil energy plants. Science. 2009; 325::1652.
    [Google Scholar]
  3. Shelly S.  Capturing CO 2 : Membrane systems move forward. Chem. Eng. Prog. 2009; 105::4247.
    [Google Scholar]
  4. NETL, Existing plants—Emissions and capture program goals, 2009, US Department of Energy.
  5. Favre E.J.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption?. J. Membr. Sci. 2007; 294::50.
    [Google Scholar]
  6. Merkel T.C., Lin H., Wei X. and Baker R.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci.. (in press, Corrected Proof)
    [Google Scholar]
  7. Merkel T., Lin H., Wei X., He J., Firat B., Amo K., Daniels R. and Baker R. In: NETL Review Meeting 2009.
  8. Welton T.  Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 1999; 99::2071.
    [Google Scholar]
  9. Ohno H.  Molten salt type polymer electrolytes. Electrochim. Acta. 2001; 46::1407.
    [Google Scholar]
  10. Ding S., Tang H., Radosz M. and Shen Y.  Atom transfer radical polymerization of ionic liquid 2-(1-butylimidazolium-3-yl)ethyl methacrylate tetrafluoroborate. J. Polym. Sci. A: Polym. Chem. 2004; 42::5794.
    [Google Scholar]
  11. Washiro S., Yoshizawa M., Nakajima H. and Ohno H.  Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer. 2004; 45::1577.
    [Google Scholar]
  12. Ikeda A., Sonoda K., Ayabe M., Tamaru S., Nakashima T., Kimizuka N. and Shinkai S.  Gelation of ionic liquids with a low molecular-weight gelator showing Tgel above 100 C . Chem. Lett. 2001; 30::1154.
    [Google Scholar]
  13. Bara J.E., Hatakeyama E.S., Gin D.L. and Noble R.D.  Improving CO 2  permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym. Adv. Technol. 2008; 19::1415.
    [Google Scholar]
  14. Wijmans J.G. and Baker R.W.  The solution-diffusion model: A review. J. Membr. Sci. 1995; 107::
    [Google Scholar]
  15. Camper D., Bara J., Koval C. and Noble R.  Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2006; 45::6279.
    [Google Scholar]
  16. Bara J.E., Gabriel C.J., Lessmann S., Carlisle T.K., Finotello A., Gin D.L. and Noble R.D.  Enhanced CO 2  separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids. Ind. Eng. Chem. Res. 2007; 46::5380.
    [Google Scholar]
  17. Carlisle T.K., Bara J.E., Gabriel C.J., Noble R.D. and Gin D.L.  Interpretation of CO 2  solubility and selectivity in nitrile-functionalized room-temperature ionic liquids using a group contribution approach. Ind. Eng. Chem. Res. 2008; 47::7005.
    [Google Scholar]
  18. Bara J.E., Gabriel C.J., Carlisle T.K., Camper D.E., Finotello A., Gin D.L. and Noble R.D.  Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J. 2009; 147::43.
    [Google Scholar]
  19. Muldoon M.J., Aki S.N.V.K., Anderson J.L., Dixon J.K. and Brennecke JF.  Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B. 2007; 111::9001.
    [Google Scholar]
  20. Bara J.E., Gabriel C.J., Hatakeyama E.S., Carlisle T.K., Lessmann S., Noble R.D. and Gin D.L.  Improving CO 2  selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J. Membr. Sci. 2008; 321::3.
    [Google Scholar]
  21. Carlisle T.K., Bara J.E., Lafrate A.L., Gin D.L. and Noble R.D.  Main-chain imidazolium polymer membranes for CO 2  separations: An initial study of a new ionic liquid-inspired platform. J. Membr. Sci. 2010; 359::37.
    [Google Scholar]
  22. Bara J.E., Camper D.E., Gin D.L. and Noble R.D.  Room-temperature ionic liquids and composite materials: platform technologies for CO 2  capture. Accounts Chem. Res. 2010; 43::1, 152.
    [Google Scholar]
  23. Hudiono Y.C., Carlisle T.K., Bara J.E., Zhang Y., Gin D.L. and Noble R.D.  A three-component mixed-matrix membrane with enhanced CO 2  separation properties based on zeolites and ionic liquid materials. J. Membr. Sci. 2010; 350::1–2, 117.
    [Google Scholar]
  24. Simons K., Niemeijer K., Bara J.E., Noble R.D. and Wessling M.  How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO 2  permeation?. J. Membr. Sci. 2010; 360::1–2, 202.
    [Google Scholar]
  25. Noble R.D.  Perspectives on ionic liquids and ionic liquid membranes. J. Membr. Sci. 2011; 369::1–2, 1.
    [Google Scholar]
  26. Gin D.L. and Noble R.D.  Designing next-generation membranes for chemical separations. Science. May 6, 2011; 332::674676.
    [Google Scholar]
  27. Bara J.E., Carlisle T.K., Gabriel C.J., Camper D., Finotello A., Gin D.L. and Noble R.D.  A guide to CO2  separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009; 48::6, 2739.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5339/stsp.2012.ccs.15
Loading
/content/journals/10.5339/stsp.2012.ccs.15
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error